Exploration of Elite Loci for Fiber Length and Strength in Upland Cotton and Prediction of Their Candidate Genes
Author:
Affiliation:

1.College of Life Science and Technology, Gansu Agricultural University;2.Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi

Clc Number:

Fund Project:

National Natural Science Foundation of China (31971986); Longyuan Young Talents for Innovation and Entrepreneurship (2020RCXM182); Science and Technology Innovation Funds of Gansu Agricultural University (GAU-KYQD-2018-01);Modern Agricultural Science and Technology Research and Achievement Transformation Plan of Shihezi in Xinjiang (31971986)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Fiber length and strength are the two most important traits in fiber quality of upland cotton (Gossypium hirsutum L.), and the understanding of their genetic basis is significant for breeding cultivars with high-quality cotton. We performed the genome-wide association study (GWAS) for fiber length and strength of association analysis group which comprises 315 upland cotton accessions grown in five different environments, through the mixed linear model (MLM). The results showed the presence of some differences in the phenotypic values of fiber length and strength, of high generalized heritability, with the fiber length variation coefficient ranging from 3.97% to 8.44%, and the fiber strength variation coefficient ranging from 7.85% to 11.26%. The analysis of variance for fiber length and strength showed highly significant effects of the genotype, environment, and genotype-environment interaction (P<0.001). Cluster analysis and population structure analysis showed that the 315 accessions could be divided into 2 groups. A total of 5 SNPs significantly associated with fiber length and/or strength were detected by GWAS, among which the locus D12_57032285 was significantly associated with both the fiber length and strength. The three loci significantly associated with fiber length were located on chromosomes A05, D11, and D12, respectively, which could explain 8.05%, 12.47% and 8.79% of the phenotypic variation, the elite allele types being A05_15144433 (AA), D11_24483544 (TT) and D12_57032285 (CC). The three loci significantly associated with fiber strength were located on chromosomes A08, D09 and D12, respectively, which could explain 9.03%, 7.94% and 7.90% of the phenotypic variation, the elite allele types being A08_84604654 (TT), D09_43463271 (TT) and D12_57032285 (CC). Through the analysis of gene expression patterns of two sets of different transcriptome data, 30 candidate genes that might be related to fiber development were selected. Through GO enrichment analysis and KEGG metabolic pathway analysis, it was found that the candidate genes mainly involved proteins or protein complexes and selectively and non-covalently interact with adenosine 5'-triphosphate (ATP), and the metabolic pathway was mainly the ribosomal metabolic pathway. The results can provide a theoretical basis for molecular genetic improvement of cotton fiber quality traits.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 18,2021
  • Revised:February 22,2021
  • Adopted:March 02,2021
  • Online: July 08,2021
  • Published:
You are the th visitor 京ICP备09069690号-23
® 2024 All Rights Reserved
Supported by:Beijing E-Tiller Technology Development Co., Ltd.