DOI: 10.13430/j.cnki.jpgr.20230104003

长豇豆营养成分及其遗传和相关性分析

屈雪华,邵景杰,严牧,何冰冰,潘磊,郭瑞,陈高,万何平,陈禅友

(江汉大学生命科学学院/湖北省豆类(蔬菜)植物工程技术研究中心/湖北省食用豆类自然科技资源中心,武汉 430056)

摘要: 为了筛选长豇豆优良种质和促进品质遗传改良,本研究以243份长豇豆品种为试验材料,采取裂区(品种+年份)试验设计方法,系统测定了豆荚的28个品质性状,估算了性状遗传力并作品质综合评价。结果表明:28个营养品质性状的变异系数变幅为10.34%~66.41%,方差分析表明品种间多数性状差异极显著,基于特征数据绘制了长豇豆主要营养成分表。维生素C和干物质含量等16个性状的广义遗传力达80%以上,亮氨酸和甲硫氨酸含量的广义遗传力低于40%。两两性状间有98个达极显著相关水平,氨基酸组分之间的关联性强。聚类分析可将243个品种分为5个类群,42%的品种聚集在Ⅱ类群,代表着长豇豆的基准水平,Ⅰ、Ⅲ和Ⅴ类群分别表现出糖类、氨基酸和蛋白质含量较高的特征,个别性状极端的品种离散分布在Ⅳ类群。主成分分析表明28个性状可转化为9个主成分,其累计贡献率为65%,根据综合得分筛选出24份优异种质。本研究有利于长豇豆品质的数据挖掘、种质挖掘、基因挖掘和深度品质遗传改良。

关键词: 长豇豆; 营养品质; 相关性分析; 主成分分析; 聚类分析

Genetic and Correlation Analysis of Asparagus Bean Nutrient

Composition

QU Xue-hua,SHAO Jing-jie,YAN Mu,HE Bing-bing,PAN Lei,GUO Rui,CHEN Gao,WAN He-ping, CHEN Chan-you

(School of Life Sciences, Jianghan University/Hubei Province Engineering Research Center for Legume Plants/Hubei Province Natural Science Resource

Center of Edible Legume, Wuhan 430056)

Abstract: In order to identify elite germplasm resource of asparagus bean applicable for genetic improvement, 243 representative asparagus bean varieties were cultivated following the split area (variety + year) test design method, followed by quantifying 28 quality characters of the pods. The heritability of the characters, correlation analysis, cluster analysis and principal component analysis were further performed. The results showed that the variation coefficients of 28 quality traits ranged from 10.34% to 66.41%. The analysis of variance illustrated that there were significant differences among varieties at most traits. Based on their characteristic data, the composition of main nutrient components in asparagus bean was listed. The broad heritability of 16 traits such as vitamin C and dry matter content was more than 80%, while that of leucine, methionine content was less than 40%. There were 98 significant correlation coefficients in a manner of pairwise comparisons, and there was a strong correlation between all amino acid components. 243 varieties were classified into five groups by cluster analysis. 42% of the varieties were clustered in group II, representing the benchmark level of asparagus bean. Group I, III and V showed high content of sugar, amino acid and protein, respectively. The varieties with extreme individual traits were scattered in group IV. Principal component analysis demonstrated that 28 traits could be transformed into nine principal components, with a cumulative contribution rate of 65%. Twenty-four elite germplasms were identified according to the comprehensive score. Collectively, this study enriched our understanding of the nutrient quality characteristics of asparagus valuable for its genetic improvement in future.

Key words: asparagus bean; nutritional quality; correlation analysis; principal component analysis; cluster analysis

收稿日期: 修回日期: 网络出版日期:

URL:

第一作者研究方向为遗传学, E-mail:1282668869@qq.com

通信作者: 陈禅友,研究方向为植物资源与遗传育种,E-mail:ccy@jhun.edu.cn

基金项目: 湖北省技术创新专项 (重大项目) (No.2017ABA147)

Foundation project: Hubei Province Technology Innovation Project (Major Program) (No.2017ABA147)

豇豆(Vigna unguiculata (L.) Walp.)起源于非洲,目前在全球 100 多个国家种植[11 。豇豆种包含三个栽培亚种,即普通豇豆(V unguiculata ssp. unguiculata)、矮豇豆(V unguiculata ssp. cylindrica)和长豇豆(V unguiculata ssp.sesquipedalis),中国为长豇豆次级起源中心[12]。长豇豆的嫩荚营养丰富,蛋白质含量高,富含粗纤维、碳水化合物、维生素 C 和钙、铁等矿质元素[31],能够增进食欲,提高人类机体免疫力[41]。据国际农粮组织 1994-2019 年统计,新鲜食用豆类主要种植于亚洲,占比 88.5%,远甚于其他洲,而其中中国地区种植面积又远超其他国家,列为第一。而长豇豆作为我国的主要鲜食豆类之一,近年来在我国年播种面积近 54 万 hm^2 ,栽培面积约占世界的 1/5[51]。

目前国内外对于长豇豆的营养品质、农艺性状及遗传多样性展开了一定的研究,如张朝明等[6]通过分析评价 6 个豇豆品种的单荚重、双荚率等农艺性状,筛选出适宜本地及周边地区栽培的豇豆品种; Bai 等[7]对江西、吉林、山西和陕西的 24 个豇豆品种的营养性状进行了评价与分析; Gumede 等[8]利用单核苷酸多态性标记分析长豇豆基因型的遗传多样性和种群结构; 詹凤园等[9]分析了 15 份长豇豆的农艺性状及品质性状,筛选出 2 份适合海南栽培的品种。但这些研究所使用的豇豆品种均较少,且多为部分地区的地方品种,具有一定的局限性,同时其测定的营养指标也不够全面,难以全面反映长豇豆品种群体营养品质的整体水平。因而选取多个地区,不同类型的长豇豆品种,对于其营养成分进行一个较为全面的分析是十分有必要的。

本研究从世界各地收集到的 2000 余份材料中鉴定筛选出 243 份长豇豆种质为试验材料,对其维生素 C、干物质、氨基酸组分、糖类、矿质元素含量等 28 项营养指标进行遗传变异分析,绘制长豇豆主要营养成分表,并构建与之相链接的豇豆种质资源营养成分数据库,为挖掘长豇豆优良种质和促进品质遗传改良奠定基础。

1 材料与方法

1.1 试验材料

243 份长豇豆种质资源,来源于湖北省豆类(蔬菜)植物工程技术研究中心(表1)。

1.2 试验设计

本试验按照裂区试验设计,播种年份为副处理,分别在 2017 年 7 月 20 日 (秋播)、2018 年 4 月 5 日 (春播),种植于武汉豆博士农业科技生态园 (湖北省武汉市汉南区湘口镇,E113°25′,N30°11′),品种作主处理,每个品种设 3 次重复,区组内随机排列。试验田为壤土,肥力较均匀一致,小区畦宽 1 m,畦长 5 m,每畦种植两行,行距 90 cm,株距 15 cm,每小区种植 70 株。按照常规栽培技术管理。商品荚成熟期分小区采收鲜荚样品,取豆荚中间部分(包括荚皮和种子),以鲜样测定维生素 C 含量。烘干样品,磨制干样,过 80 目筛,干燥贮存备用。

1.3 测定项目与方法

参照 GB5009.86-2016,采用 2,6-二氯酚靛酚滴定法测定维生素 C 含量;采用烘干法测定干物质含量;采用气相色谱质谱法(GC/MS 法)测定氨基酸含量(仪器型号:安捷伦气相色谱质谱联用仪),采用考马斯亮蓝比色法测定可溶性蛋白质含量^[10],蛋白质含量和氨基酸组分委托中国科学院植物研究所测试。采用蒽酮比色法测定可溶性总糖含量^[11];采用火焰原子吸收光谱法(FAAS 法)测定钙含量(仪器型号:TAS-990 原子吸收光谱仪);采用电感耦合等离子体质谱法(ICP-MS)进行测定铁、锌、铜、硒含量(仪器型号:contrAA700 电感耦合等离子体质谱仪);依据 GB/T 5009.10-2003 规定进行粗纤维含量测定。上述测定均随机取样,重复 3 次。

1.4 统计分析

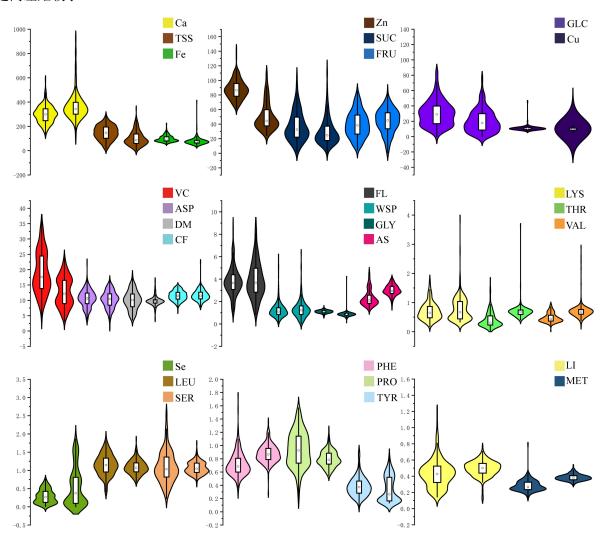
用 Microsoft Excel 2020 和 SPSS 26.0 作统计分析;用 R Studio 估算广义遗传力并用 corrplot 包绘制相关性热图;用 Origin2021 绘制小提琴图并作聚类及主成分分析;用 Adobe Illustrator 2021 整合小提琴图。

表 1 参试品种基本情况

Table 1 Basic information of tested varieties

编号	名称	来源	编号	名称	来源	编号	名称	来源
No. JD-0001	Name 902 豆角	Origin 中国安徽	No.	Name 桂冠	Origin 中国湖北	No.	Name 白玉王	Origin 中国江西
JD-0002	寒豆角 J032	中国安徽	JD-0082	奥博	中国砌北中国湖北	JD-0163	高山豇豆王小叶	中国江西
JD-0003	早熟种三尺绿	中国北京	JD-0083	奥博特	中国砌北中国湖北	JD-0164	华赣银冠王胖胖豇	中国江西
JD-0004	圣尼亚春秋 35 天	中国北京	JD-0084	汉川浅绿	中国砌北中国湖北	JD-0165	海亚特	中国江西
JD-0005	北京新科	中国北京	JD-0085 JD-0086	JD-0101	中国砌北中国湖北	JD-0166	668 绿条	中国辽宁
JD-0006	绿尔白剑	中国北京	JD-0086 JD-0087	正源高优 22 号长身豆角	中国湖北	JD-0167 JD-0168	黄蕾豇豆	中国辽宁
JD-0007	ZYZ-4947	中国北京	JD-0087 JD-0088	眉青一号	中国湖北	JD-0168 JD-0169	无架豆	中国辽宁
JD-0008	ZYZ-4948	中国北京	JD-0088	勾勾江	中国湖北	JD-0169 JD-0170	白籽青条	中国辽宁
JD-0009	ZYZ-4950	中国北京	JD-0089 JD-0090	白皮	中国湖北	JD-0170 JD-0171	特长 902 豇豆	中国辽宁
JD-0010	ZYZ-4951	中国北京	JD-0090	紫躁豇豆	中国湖北	JD-0171	满地红	中国辽宁
JD-0011	ZYZ-4958	中国北京	JD-0091 JD-0092	农豇二号	中国湖北	JD-0172 JD-0173	黄籽白条	中国辽宁
JD-0012	ZYZ-4978	中国北京	JD-0092 JD-0093	皇后豆王长豆角	中国湖北	JD-0173	丰豇 988	中国辽宁
JD-0013	ZYZ-5490	中国北京	JD-0094	全能 99 特长豇豆	中国湖北	JD-0174	金奇丽	中国辽宁
JD-0014	泰豇1号豆角	中国重庆	JD-0095	红白花籽	中国湖北	JD-0176	绿美人	中国辽宁
JD-0015	夏秋领秀	中国福建	JD-0096	牛角弯	中国湖北	JD-0170	青条豇豆	中国辽宁
JD-0016	今日领秀	中国福建	JD-0097	花豆角	中国湖北	JD-0177	绿条	中国辽宁
JD-0017	先锋6号	中国福建	JD-0098	晏豆角	中国湖北	JD-0179	南平白皮短豇豆	中国宁夏
JD-0018	天下比优	中国福建	JD-0099	黄荚	中国湖北	JD-0179	豇豆 (白籽)	中国山东
JD-0019	亮美 17	中国福建	JD-0100	黑豇豆	中国湖北	JD-0181	龙纹豇豆	中国山东
JD-0020	港头占阳白豆角	中国福建	JD-0101	花菜	中国湖北	JD-0182	精选张塘王	中国山东
JD-0021	西园白 (黑籽)	中国广东	JD-0102	银雁	中国湖北	JD-0183	宝鸡地豇豆	中国陕西
JD-0022	交黑自豆	中国广东	JD-0103	象牙白	中国湖北	JD-0184	雪豇王	中国四川
JD-0023	东方红揭上豆角	中国广东	JD-0104	矮紫尾青	中国湖北	JD-0185	早熟五号豇豆	中国四川
JD-0024	穗丰红豆角	中国广东	JD-0105	线豇	中国湖北	JD-0186	白胖子	中国四川
JD-0025	穗丰五号	中国广东	JD-0106	深红	中国湖北	JD-0187	蜀王早抗一号	中国四川
JD-0026	穗丰猪仔豆	中国广东	JD-0107	长青豇豆	中国湖北	JD-0188	长白豇豆 0219	中国四川
JD-0027	穗丰八号	中国广东	JD-0108	棒槌豇豆	中国湖北	JD-0189	红荚白露	中国四川
JD-0028	夏美1号自豆角	中国广东	JD-0109	赤种三尺长豇豆	中国湖北	JD-0190	自豇豆	中国四川
JD-0029	揭上 2 号 J033	中国广东	JD-0110	YB-2(全绿白仁)	中国湖北	JD-0191	台湾特长豇豆王	中国台湾
JD-0030	自沙 10号 J019	中国广东	JD-0111	黄花青	中国湖北	JD-0192	台湾超长80	中国台湾
JD-0031	湛江七叶籽	中国广东	JD-0112	一季豆	中国湖北	JD-0193	台湾特长春秋	中国台湾
JD-0032	(老品种) 901	中国广东	JD-0113	红壳长豇豆	中国湖北	JD-0194	黄花快	中国天津
JD-0033	桂林黑籽	中国广东	JD-0114	秋白豆	中国湖北	JD-0195	绿特宝	中国云南
JD-0034	开阳白豇豆	中国贵州	JD-0115	长自豇豆	中国湖北	JD-0196	海特丰	中国云南
JD-0035	特长三尺绿	中国河北	JD-0116	绿条豇豆	中国湖北	JD-0197	之豇 19	中国浙江
JD-0036	金束鹿领先一号	中国河北	JD-0117	月月豇	中国湖北	JD-0198	之豇 14	中国浙江
JD-0037	金豇绿龙	中国河南	JD-0118	晚红豇	中国湖北	JD-0199	抗病芦花	中国浙江
JD-0038	开封挑箭豆角	中国河南	JD-0119	茶罗米	中国湖北	JD-0200	之豇 28-2 对荚种	中国浙江
JD-0039	风豇优早	中国河南	JD-0120	白皮豇	中国湖北	JD-0201	紫秋豇六号	中国浙江
JD-0040	线豆角	中国湖北	JD-0121	花容	中国湖北	JD-0202	特长青条 901 J008	中国浙江
JD-0041	躁豇豆	中国湖北	JD-0122	野生红色	中国湖北	JD-0203	12-1	中国
JD-0042	葛 901 J001	中国湖北	JD-0123	1-2	中国湖北	JD-0204	13-1	中国
JD-0043	盖世青条三尺三 J006	中国湖北	JD-0124	1-7	中国湖北	JD-0205	16-1	中国
JD-0044	大自条豇豆	中国湖北	JD-0125	金马特长1号	中国湖北	JD-0206	20-1	中国
JD-0045	原种白杜豇	中国湖北	JD-0126	双半豇豆 J0091	中国湖北	JD-0207	20-3	中国
JD-0046	博豇一号	中国湖北	JD-0127	白牛角弯 J042	中国湖北	JD-0208	22-2	中国

JD-0047	鄂豇一号	中国湖北	JD-0128	2-15	中国湖北	JD-0209	23-1	中国
JD-0048	三尺白玉豇豆	中国湖北	JD-0129	红荚黑籽	中国湖北	JD-0210	27-1	中国
JD-0049	特长四季架豆	中国湖北	JD-0130	翠花	中国湖北	JD-0211	28-1	中国
JD-0050	特长四季架豆	中国湖北	JD-0131	秒翠	中国湖北	JD-0212	29-1	中国
JD-0051	改良超长 282 豇豆	中国湖北	JD-0132	WJ-15	中国湖北	JD-0213	30-3	中国
JD-0052	利川豇豆	中国湖北	JD-0133	WJ-16	中国湖北	JD-0214	33-1	中国
JD-0053	圈圈豆	中国湖北	JD-0134	WJ-26	中国湖北	JD-0215	34-1	中国
JD-0054	鄂豇豆2号	中国湖北	JD-0135	WJ-27	中国湖北	JD-0216	35-3	中国
JD-0055	鄂豇豆6号	中国湖北	JD-0136	WJ-28	中国湖北	JD-0217	38-2	中国
JD-0056	鄂豇豆7号	中国湖北	JD-0137	WJ-31	中国湖北	JD-0218	40-4	中国
JD-0057	鄂豇豆 12 号	中国湖北	JD-0138	比优 10 号 绿白豇豆	中国湖北	JD-0219	41-3	中国
JD-0058	白豆角	中国湖北	JD-0139	鄂豇豆 14	中国湖北	JD-0220	42-3	中国
JD-0059	柳风	中国湖北	JD-0140	杜豇	中国湖北	JD-0221	43-3	中国
JD-0060	热抗王	中国湖北	JD-0141	早生王豇豆	中国湖南	JD-0222	44-1	中国
JD-0061	小白条	中国湖北	JD-0142	天畅早生王	中国湖南	JD-0223	45-3	中国
JD-0062	白条	中国湖北	JD-0143	穿山抗病早生王 844	中国湖南	JD-0224	51-2	中国
JD-0063	豇豆王2号	中国湖北	JD-0144	常德青皮豆角	中国湖南	JD-0225	52-1	中国
JD-0064	2013-1	中国湖北	JD-0145	绿肉肉豇豆	中国湖南	JD-0226	53-2	中国
JD-0065	2013-3	中国湖北	JD-0146	超级豇豆	中国湖南	JD-0227	55-2	中国
JD-0066	2013-6	中国湖北	JD-0147	精选 901 青豇豆	中国吉林	JD-0228	58-2	中国
JD-0067	2013-8	中国湖北	JD-0148	亚泰 1 号豇豆	中国吉林	JD-0229	58-4	中国
JD-0068	2013-10	中国湖北	JD-0149	之豇 60	中国江苏	JD-0230	62-2	中国
JD-0069	油青	中国湖北	JD-0150	江蔬早豇一号	中国江苏	JD-0231	70-1	中国
JD-0070	豇豆王1号	中国湖北	JD-0151	宁豇三号	中国江苏	JD-0232	70-2	中国
JD-0071	花魁	中国湖北	JD-0152	海美瑞	中国江苏	JD-0233	75-2	中国
JD-0072	蔡豇	中国湖北	JD-0153	绿领蛟龙	中国江苏	JD-0234	78-3	中国
JD-0073	创丰八号	中国湖北	JD-0154	天禧长豇 0224	中国江苏	JD-0235	79-1	中国
JD-0074	金华自1号	中国湖北	JD-0155	西圆黑 0222	中国江苏	JD-0236	80-3	中国
JD-0075	东方韵	中国湖北	JD-0156	扬豇 40	中国江苏	JD-0237	2011AF BE-02	尼日利亚
JD-0076	创丰一号	中国湖北	JD-0157	扬豇 12 0207	中国江苏	JD-0238	美国无架豆	美国
JD-0077	摇钱树	中国湖北	JD-0158	路路通2号	中国江苏	JD-0239	Cowpea Green-eyed pea	美国
JD-0078	创丰三号	中国湖北		彩蝶•美佳(长豇豆)	中国汽车		Long bean thai white	美国
JD-0079		中国湖北	JD-0159	春秋红无架豆	中国江西	JD-0240	seeded Asparagus bean red-	美国
JD-0080	创丰十三号	中国細小	JD-0160		中国江西	JD-0241	seeded	
JD-0080 JD-0081	创丰十五号	中国湖北中国湖北	JD-0161	江西十月红冬豇	中国江西	JD-0242	Cowpea monkey tail	美国
JD-0081	早冠	中国砌北	JD-0162	赣蝶三号 金钻王	中国江西	JD-0243	美国地豆	美国


2 结果与分析

2.1 长豇豆品质性状的基本特征数据和分布特点

243 份长豇豆品种的维生素 C、干物质、氨基酸组分、糖类、矿质元素含量等 28 项指标的结果显示,不同长豇豆品种的品质性状差异较大,变异系数范围在 10.34%~66.41%。苏氨酸含量的平均值为 0.41,变异系数最大,高达 66.41%,具有更丰富的遗传多样性;而丙氨酸含量的平均值为 0.10,变异系数最小,为 10.34%,遗传多样性相对较低。甘氨酸、丙氨酸、锌、粗纤维含量的变异系数范围在 10%~20%之间;脯氨酸、甲硫氨酸、苯丙氨酸、碱溶蛋白、铁、钙含量的变异系数范围在 20%~30%;维生素 C、干物质、缬氨酸、亮氨酸、异亮氨酸、丝氨酸、天冬氨酸、酪氨酸、类黄酮、铜含量的变异系数范围在 30%~40%;赖氨酸、果糖、总糖含量的变异系数范围在 40%~50%;水溶蛋白、葡萄糖和蔗糖含量的变异系数范围在 50%~60%;苏氨酸和硒含量的变异系数范围在 65%~70%(表 2)。

将长豇豆春季与秋季营养品质性状的品种分布情况绘制成小提琴图,如图1所示,大部分品质性状春

季与秋季之间差异相对较小,但不同性状的品种分布概率密度存在较大差异。说明不同品种的基因型是影响品质性状的主要因素,环境与基因型互作的影响在不同性状表现中亦有差异。其中,维生素 C、可溶性糖、矿质元素、干物质含量等性状春季普遍高于秋季,氨基酸、可溶性蛋白质、粗纤维等性状含量在两个季度之间差距较小。

Ca: 钙, TSS: 可溶性总糖, Fe: 铁, Zn: 锌, SUC: 蔗糖, FRU: 果糖, GLC: 葡萄糖, Cu: 铜, VC: 维生素 C, ASP: 碱溶蛋白, DM: 干物质, CF: 粗纤维, FL: 类黄酮, WSP: 水溶蛋白, GLY: 甘氨酸, AS: 天冬氨酸, LYS: 赖氨酸, THR: 苏氨酸, VAL: 缬氨酸, Se: 硒, LEU: 亮氨酸, SER: 丝氨酸, PHE: 苯丙氨酸, PRO: 脯氨酸, TYR: 酪氨酸, LI: 异亮氨酸, MET: 甲硫氨酸

TSS: Total soluble sugar; SUC: Sucrose; FRU: Fructose; GLC: Glucose; ASP: Alkaline soluble protein; DM: Dry matter; CF: Crude fiber; FL: Flavonoid; WSP: Water soluble protein; GLY: Glycine; AS: Aspartic acid; LYS: Lysine; THR: Threonine; VAL: Valine; LEU: Leucine; SER: Serine; PHE: Phenylalanine; PRO: Proline; TYR: Tyrosine; LI: L-isoleucine; MET: Methionine

图 1 长豇豆部分营养性状小提琴图

Fig.1 Violin plot of selected nutritional traits of asparagus bean

2.2 长豇豆品质性状的遗传力估算

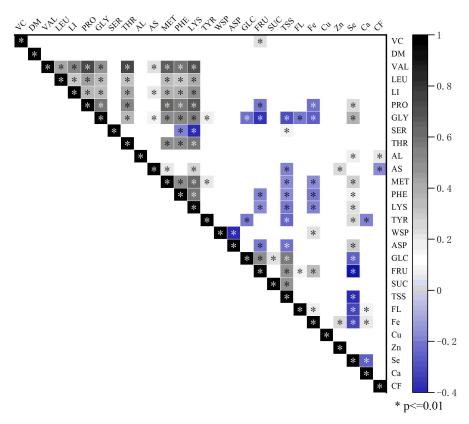
对参试品种品质性状进行遗传力计算,结果如表 2 所示。维生素 C 含量、干物质含量、部分氨基酸、糖类、类黄酮、粗纤维、矿质元素含量的广义遗传力均大于 80%。其中葡萄糖、果糖、蔗糖、苏氨酸、锌、铁、钙、硒含量的广义遗传力均超过 95%,性状间差异较小,说明这些品质性状受环境影响较小,这与陈禅友等[12]的研究结果相似;亮氨酸、甲硫氨酸含量的广义遗传力则低于 40%。

表 2 243 份长豇豆种质资源性状表现、变异程度及遗传力(长豇豆部分营养成分表)

Table 2 Trait performance, degree of variation and heritability of 243 asparagus bean germplasm resources (Partial nutrition information of asparagus bean)

生状 Frait	均值 Mean	极大值 Max	极小值 Min	标准偏差 SD	变异系数	遗传力 H (%)
	Mean			SD	CV (%)	П (70)
维生素 C	18.98	37.43	4.51	6.77	35.67%	84.67%
VC/(mg/100g)		(ZYZ-4978)	(超级豇豆)			
干物 质	10.05	18.31	3.57	3.07	30.57%	83.12%
Ory matter/(%)	10.03	(42-3)	(天下比优)	3.07	30.3770	03.12/
颉氨酸		0.93	0.23			
Valine/(g/100g)	0.48	(Cowpea Green-eyed pea)	(晏豆角)	0.16	32.57%	59.41%
· amic/(g/100g) 亮氨酸		6.60	0.38			
	1.17			0.45	38.59%	7.89%
Leucine/(g/100g)		(2013-3)	(绿条豇豆)			
异亮氨酸	0.43	1.21	0.14	0.17	39.25%	60.44%
isoleucine/(g/100g)	0.15	(创丰八号)	(亮美 17)	0.17	37.2370	00.117
浦氨酸	0.04	1.57	0.20	0.27	20.600/	70.040
Proline/(g/100g)	0.94	(70-1)	(野生红色)	0.27	28.60%	78.04%
甘氨酸		1.58	0.60			
	1.10			0.14	13.21%	68.53%
Glycine /(g/100g)		(赣蝶三号 金钻王)	(野生红色)			
丝氨酸	1.10	2.58	0.23	0.43	39.51%	58.46%
Serine/(g/100g)	1.10	(泰豇 1 号豆角)	(晚红豇)	0.43	37.3170	30.707
苏氨酸		1.77	0.04			
Threonine/(g/100g)	0.41	(Cowpea Green-eyed pea)	(海亚特)	0.27	66.41%	97.48%
			0.10			
万氨酸	0.11	0.17		0.01	10.34%	80.589
Alanine/(g/100g)		(22-2)	(晚红豇)			
F 冬氨酸	2.31	4.72	1.30	0.71	30.76%	82.59%
Aspartic acid/(g/100g)	2.31	(常德青皮豆角)	(江蔬早豇一号)	0.71	30.70%	62.397
(<i>g g)</i> 甲硫氨酸		0.79	0.12			
J J	0.28	(62-2)	(野生红色)	0.07	24.23%	28.839
fethionine/(g/100g)		` /				
长丙氨酸	0.72	1.76	0.27	0.18	25.45%	53.239
henylalanine/(g/100g)	0.72	(之豇 14)	(之豇 19)	0.10	23.1370	33.23
负氨酸	0.71	1.82	0.17	0.20	42.040/	06.600
ysine/(g/100g)	0.71	(80-3)	(天下比优)	0.30	43.04%	86.689
各氨酸		0.94	0.06			
	0.38	(绿肉肉豇豆)	(紫秋豇六号)	0.15	38.24%	57.719
yrosine/(g/100g)		` ,	* 1			
以溶蛋白	1.24	5.99	0.17	0.72	58.01%	76.339
Vater soluble protein/(mg/g)	1.21	(豇豆王 1 号)	(圏圏豆)	0.72	30.0170	70.55
域溶蛋白	10.55	22.36	3.62	2.50	26.210/	01.050
Alkaline soluble protein/(mg/g)	10.55	(16-1)	(Long bean thai white seeded)	2.78	26.31%	81.859
葡萄糖		84.72	0.14			
	30.49			16.46	53.98%	99.309
flucose/(mg/g)		(双半豇豆 J0091)	(Cowpea Green-eyed pea)			
具糖	39.68	84.81	4.33	17.83	44.94%	95.639
ructose/(mg/g)	39.00	(2013-6)	(春秋红无架豆)	17.65	44.74/0	93.03
		108.71	2.31			
ucrose/(mg/g)	37.06	(金豇绿龙)	(自豇豆)	20.18	54.46%	97.839
k糖		291.11	15.39			
	147.40			59.46	40.34%	91.449
otal soluble sugar/(mg/g)		(江蔬早豇一号)	(29-1)			
美黄酮	3.80	9.06	0.79	1.30	34.30%	75.53
lavonoid/ (mg/g)	3.80	(东方红揭上豆角)	(海亚特)	1.30	34.30%	15.55
ŧ		217.98	56.30			
	98.10	(秋白豆)	(28-1)	25.54	26.03%	99.529
e/(mg/kg)			` /			
ii	10.88	46.25	6.72	3.66	33.65%	85.019
u/(mg/kg)		(超级豇豆)	(ZYZ-5490)			
È	07 64	143.56	60.94	12.20	15 200/	00.050
n/(mg/kg)	87.64	(金束鹿领先一号)	(油青)	13.39	15.28%	99.959
所 (0.76	0.01			
	0.29			0.19	65.12%	99.359
e/(mg/kg)		(22-2)	(Cowpea Green-eyed pea)			
丐	298.20	587.48	138.39	70.27	23.56%	99.469
Ca/(mg/g)	270.20	(赤种三尺长豇豆)	(34-1)	10.21	23.3070	JJ. 4 0
11 11 11 11 11		14.68	6.43		12.0.00	
Crude fiber/(%)	11.50	(鄂豇一号)	(一季豆)	1.59	13.84%	65.749

括号内为极大值、极小值对应品种名称,品种名称同表1


In parentheses, the maximum value and minimum value are correspond to the name of the variety, and the variety name is the same as Table 1.

2.3 长豇豆品质性状的相关性分析

28 个品质性状间有 98 个相关系数达到极显著水平,26 个相关系数达显著水平,254 个相关系数无显著性。其中,维生素 C 与果糖呈极显著正相关,相关系数为 0.224。大部分氨基酸含量之间相关性达到极

显著水平,缬氨酸与亮氨酸、异亮氨酸、脯氨酸、甘氨酸、苏氨酸、天冬氨酸、甲硫氨酸、苯丙氨酸、赖氨酸含量呈极显著正相关,与苏氨酸含量相关系数最高,相关系数为 0.749。糖类化合物和部分氨基酸含量之间相关性达到极显著水平,可溶性总糖与甘氨酸、天冬氨酸、甲硫氨酸、苯丙氨酸、赖氨酸、酪氨酸含量呈极显著负相关,与甘氨酸含量负相关系数最大,为-0.295;果糖与脯氨酸、甘氨酸、苯丙氨酸、赖氨酸呈极显著负相关,与甘氨酸含量负相关系数最大,为-0.356。矿质元素与部分氨基酸、糖类化合物含量之间相关性达到显著水平,铁与锌、钙、水溶蛋白含量呈极显著正相关,与脯氨酸、甘氨酸、甲硫氨酸、苯丙氨酸、赖氨酸、硒、粗纤维含量呈极显著负相关;与之相反,硒与脯氨酸、甘氨酸、甲硫氨酸、苯丙氨酸、赖氨酸、酪氨酸、碱溶蛋白含量呈极显著正相关,与钙、类黄酮、葡萄糖、果糖含量呈极显著负相关。

由图 2 可知,缬氨酸、亮氨酸、异亮氨酸、脯氨酸、甘氨酸、丝氨酸、苯丙氨酸、赖氨酸等氨基酸含量之间呈极显著正相关,说明长豇豆氨基酸组分之间的关联性强,可能有联动效应。硒含量则与水溶蛋白、糖类化合物、铁含量呈极显著负相关,说明硒与这些性状之间可能存在相互抑制的作用。可溶性总糖含量与苏氨酸、苯丙氨酸、赖氨酸、酪氨酸、水溶蛋白、碱溶蛋白含量呈极显著负相关,说明总糖含量与这些性状之间也可能存在相互抑制的作用。这些丰富的性状差异,为后续优质长豇豆种质的选配创造了条件。

VC: 维生素 C, DM: 干物质, VAL: 缬氨酸, LEU: 亮氨酸, LI: 异亮氨酸, PRO: 脯氨酸, GLY: 甘氨酸, SER: 丝氨酸, THR: 苏氨酸, AL: 丙氨酸, AS: 天冬氨酸, MET: 甲硫氨酸, PHE: 苯丙氨酸, LYS: 赖氨酸, TYR: 酪氨酸, WSP: 水溶蛋白, ASP: 碱溶蛋白, GLC: 葡萄糖, FRU: 果糖, SUC: 蔗糖, TSS: 可溶性总糖, FL: 类黄酮, Fe: 铁, Cu: 铜, Zn: 锌, Se: 硒, Ca: 钙, CF: 粗纤维; *表示 P≤0.01 水平极显著相关

DM: Dry matter; VAL: Valine; LEU: Leucine; LI: L-isoleucine; PRO: Proline; GLY: Glycine; SER: Serine; THR: Threonine; AL: Alanine; AS: Aspartic acid; MET: Methionine; PHE: Phenylalanine; LYS: Lysine; TYR: Tyrosine; WSP: Water soluble protein; ASP: Alkaline soluble protein; GLC: Glucose; FRU: Fructose; SUC: Sucrose; TSS: Total soluble sugar; FL: Flavonoid; CF: Crude fiber; *Represents significant correlation at P≤0.01

图 2 243 份长豇豆种质资源 28 个性状的相关性分析

Fig.2 Correlation analysis of 28 traits in 243 asparagus bean germplasm resources

2.4 基于品质性状的长豇豆品种聚类分析

由聚类图可知,当聚类阈值为 200 时,参试品种可分为 5 个类群 (表 3)。42%的品种聚在II类群,代表着长豇豆的基准水平,I、III和V类群分别表现出糖类、氨基酸和蛋白质含量较高的特征,个别性状极端的品种离散分布在IV类群。

I类群由52个品种构成,品质性状表现为干物质、葡萄糖、蔗糖、可溶性总糖含量较高,异亮氨酸、脯氨酸、甘氨酸、苏氨酸、丙氨酸等氨基酸含量较低,其中最具代表性的品种为奥博;II类群由99个品种构成,品质性状表现为丝氨酸、铁、锌含量较高,缬氨酸、亮氨酸、酪氨酸、硒含量较低,其中最具代表性的品种为红荚黑籽;III类群由47个品种构成,品质性状表现为维生素C、亮氨酸、异亮氨酸、脯氨酸、甘氨酸、赖氨酸、酪氨酸碱溶蛋白、粗纤维含量较高,水溶蛋白、糖类、铁、锌、钙含量较低,其中最具代表性的品种为16-1;IV类群由6个品种构成,品质性状表现为水溶蛋白、果糖、铁、锌、钙含量较高,维生素C、干物质、碱溶蛋白和蔗糖含量较低,其中最具代表性的品种为YB-2(全绿白仁);V类群由32个品种构成,品质性状表现为天冬氨酸、类黄酮、铜含量较高,粗纤维、缬氨酸含量较低,其中最具代表性的品种为棒槌豇豆。

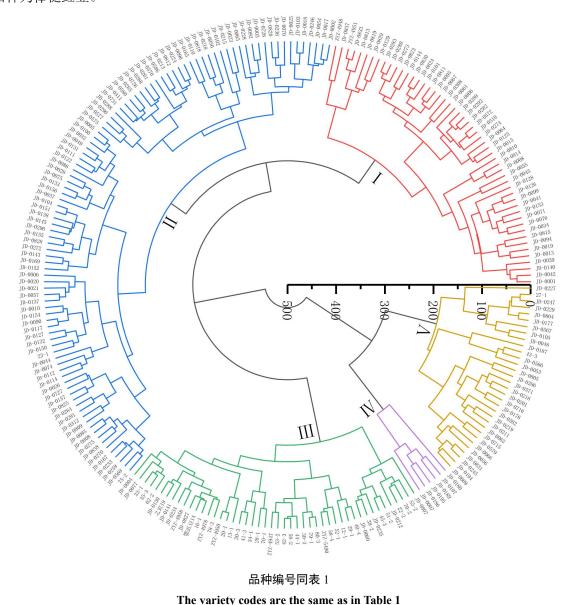


图 3 基于长豇豆主要品质的品种聚类图

Fig.3 Cluster diagram of varieties based on main quality of asparagus bean

表 3 5 个品种群材料 28 个性状的平均值

Table 3 Means of 28 traits in the materials of the five breed groups

性状 Trait	I	II	III	IV	V
维生素 C VC	18.06	18.68	21.73	17.04	18.22
干物质 Dry matter	10.59	9.87	10.42	7.93	10.09
缬氨酸 Valine	0.49	0.47	0.50	0.55	0.47
亮氨酸 Leucine	1.25	1.09	1.28	1.22	1.17
异亮氨酸 L-isoleucine	0.42	0.44	0.46	0.43	0.42
脯氨酸 Proline	0.90	0.91	1.06	1.01	0.91
甘氨酸 Glycine	1.05	1.06	1.20	1.18	1.12
丝氨酸 Serine	1.11	1.16	0.96	1.07	1.06
苏氨酸 Threonine	0.38	0.38	0.44	0.59	0.42
丙氨酸 Alanine	0.10	0.11	0.11	0.11	0.11
天冬氨酸 Aspartic acid	1.96	2.40	2.36	2.32	2.53
甲硫氨酸 Methionine	0.27	0.27	0.31	0.32	0.28
苯丙氨酸 Phenylalanine	0.68	0.69	0.80	0.81	0.73
赖氨酸 Lysine	0.65	0.66	0.85	0.80	0.71
酪氨酸 Tyrosine	0.36	0.35	0.47	0.41	0.38
水溶蛋白 Water soluble protein	1.33	1.28	1.13	1.34	1.18
碱溶蛋白 Alkaline soluble protein	9.89	10.14	11.89	8.74	11.01
葡萄糖 Glucose	41.23	33.39	17.48	29.19	22.19
果糖 Fructose	46.12	43.91	24.86	54.59	32.91
蔗糖 Sucrose	55.07	35.97	29.15	14.76	26.86
总糖 Total soluble sugar	219.68	155.31	78.07	137.13	102.99
类黄酮 Flavonoid	3.85	3.96	3.01	3.74	4.46
铁 Fe	94.33	107.58	79.63	108.93	100.61
铜 Cu	10.14	10.92	11.11	10.77	11.70
锌 Zn	86.77	89.43	84.81	92.81	87.95
硒 Se	0.23	0.23	0.50	0.30	0.26
钙 Ca	265.37	312.83	218.52	484.14	379.14
粗纤维 Crude fiber	11.64	11.33	11.92	11.60	11.31

2.5 长豇豆品质性状的主成分分析

为消除多种性状之间的互作影响,用更少的变量去解释大部分的变异,对参试品种的个品质性状数据标准化后进行主成分分析,分析结果如表 4 所示。根据特征值大于 1 的原则,选取前 9 个主成分,其累计贡献率达 65.07%,可基本反映全部特征,用 9 个主成分代替 28 个性状评价及筛选豇豆品种。

第一主成分的特征值为 5.635, 贡献率为 20.124%, 决定第一主成分的主要是缬氨酸、亮氨酸、异亮氨酸、脯氨酸、甘氨酸、苏氨酸、甲硫氨酸、苯丙氨酸、赖氨酸含量,这些性状均与长豇豆氨基酸含量有关,故将第一主成分称为氨基酸相关因子;第二主成分的特征值为 3.027, 贡献率为 10.811%, 决定第二主成分的主要是葡萄糖、果糖、可溶性总糖含量,这些性状均与长豇豆糖类化合物含量有关,故将第二主成分称为糖类相关因子;第三主成分的特征值为 1.986, 贡献率为 7.092%, 决定第三主成分的主要是铁、铜、锌、钙含量,这些性状均与长豇豆矿质元素含量有关,故将第三主成分称为矿质元素相关因子。

利用主成分成分矩阵和总方差解释计算 243 份长豇豆的主成分综合得分,综合得分越高,种质特异性状聚集程度越高。根据综合得分从大到小的排序,获得综合表现前 10%的种质,如表 5 所示。

表 4 28 个性状的特征向量及贡献率

Table 4 Eigenvectors and contribution rates of 28 traits

性状 trait				主成分 I	Principal co	mponents			
注水 trait	1	2	3	4	5	6	7	8	9
初始特征值	5.635	3.027	1.986	1.441	1.380	1.334	1.204	1.150	1.062
Eigenvalue	3.033	3.027	1.960	1.441	1.360	1.334	1.204	1.130	1.002
贡献率	20.124	10.011	5 000		4.000	4.500	4.201	4.100	2.501
Contribution rate(%)	20.124	10.811	7.092	5.146	4.929	4.763	4.301	4.108	3.791
累计贡献率									
Accumulative contribution rate(%)	20.124	30.935	38.027	43.173	48.102	52.865	57.166	61.274	65.065
维生素 C VC	-0.015	-0.298	-0.033	-0.209	-0.325	-0.059	0.554	-0.229	0.043
干物质 Dry matter	0.006	-0.298	-0.033	0.020	0.091	-0.331	-0.080	0.460	0.145
缬氨酸 Valine	0.811	0.417	-0.271	-0.063	-0.082	0.085	0.060	0.400	0.143
亮氨酸 Leucine	0.811	0.417	-0.037 -0.170	0.031	0.100	0.083	-0.025	0.019	-0.022
异亮氨酸 L-isoleucine	0.563	0.307	0.076	0.169	0.230	-0.095	-0.131	0.024	0.060
脯氨酸 Proline	0.818	0.164	-0.162	-0.028	-0.077	0.022	0.008	-0.010	-0.050
甘氨酸 Glycine	0.750	-0.162	-0.040	-0.073	0.072	0.233	-0.156	0.037	-0.023
丝氨酸 Serine	-0.232	0.075	-0.166	-0.312	0.085	0.653	-0.300	0.042	0.205
苏氨酸 Threonine	0.687	0.351	0.076	-0.156	0.064	0.044	0.102	-0.113	-0.033
丙氨酸 Alanine	-0.067	-0.304	0.097	-0.051	0.055	0.258	0.347	0.465	-0.306
天冬氨酸 Aspartic acid	0.262	0.098	0.540	0.261	-0.275	0.205	-0.044	0.226	0.152
甲硫氨酸 Methionine	0.776	0.082	-0.038	-0.052	0.054	0.076	0.139	0.085	0.147
苯丙氨酸 Phenylalanine	0.736	0.105	-0.034	-0.003	0.016	-0.046	0.047	-0.221	-0.057
赖氨酸 Lysine	0.851	0.145	0.051	0.122	-0.045	-0.191	0.096	0.006	-0.025
酪氨酸 Tyrosine	0.191	-0.379	-0.034	-0.257	0.395	-0.276	0.226	-0.042	0.373
水溶蛋白 Water soluble protein	-0.028	0.277	0.204	-0.688	-0.107	-0.212	-0.015	0.152	-0.037
碱溶蛋白 Alkaline soluble protein	0.112	-0.449	-0.019	0.662	-0.019	-0.047	-0.019	0.040	0.142
葡萄糖 Glucose	-0.228	0.547	-0.465	0.281	0.097	0.106	0.187	-0.024	0.044
果糖 Fructose	-0.348	0.611	-0.053	0.140	0.432	-0.055	0.166	0.085	0.214
蔗糖 Sucrose	-0.064	0.249	-0.491	-0.040	-0.599	-0.217	0.003	0.191	-0.122
总糖 Total soluble sugar	-0.359	0.592	-0.495	0.067	-0.139	0.037	0.116	0.181	0.031
类黄酮 Flavonoid	-0.203	0.273	0.347	0.172	0.139	-0.163	0.329	-0.205	-0.349
铁 Fe	-0.316	0.370	0.482	-0.105	0.069	-0.121	0.037	0.191	0.342
铜 Cu	0.125	0.105	0.308	0.028	0.114	-0.241	-0.317	0.359	-0.436
锌 Zn	0.011	0.201	0.397	0.093	-0.255	0.157	0.360	0.310	0.234
硒 Se	0.408	-0.619	-0.123	0.044	-0.165	0.079	0.076	0.197	0.173
钙 Ca	-0.135	0.312	0.297	0.087	-0.140	0.401	0.024	-0.184	-0.093
粗纤维 Crude fiber	0.045	-0.226	-0.220	-0.074	0.446	0.295	0.343	0.231	-0.314

表 5 前 10%的长豇豆品种的综合得分及排名

Table 5 Overall score and ranking of the top 10% asparagus bean varieties

排名 Rank	品种 Variety	综合得分 Comprehensive component	类群 排名 品种 Rank Variety			综合得分 Comprehensive component	类群 Group
1	花豆角	1.1116	III	13	湛江七叶籽	0.6666	II
2	南平白皮短豇豆	0.9699	V	14	矮紫尾青	0.6629	II
3	鄂豇一号	0.8998	II	15	海美瑞	0.6510	II
4	圈圈豆	0.8981	V	16	70-1	0.6475	III
5	摇钱树	0.8951	III	17	YB-2(全绿自仁)	0.6288	IV
6	线豆角	0.8787	II	18	深红	0.6251	II
7	创丰八号	0.8281	I	19	皇后豆王长豆角	0.6108	II
8	ZYZ-4958	0.8221	III	20	特长三尺绿	0.6063	II
9	超级豇豆	0.7961	V	21	线豇	0.6011	II
10	902 豆角	0.7749	IV	22	ZYZ-4950	0.5556	III
11	常德青皮豆角	0.7453	II	23	红荚黑籽	0.5502	II
12	春秋红无架豆	0.6766	V	24	创丰十五号	0.5422	II

3 讨论

机体由于营养不平衡或缺乏某种维生素和人体必需矿物质同时过度摄入其他营养成分,会产生隐蔽性营养需求的饥饿症状,即隐性饥饿。相关研究表明,目前全世界大约有 20 亿人患有微量营养素(维生素和矿物质)缺乏症^[13-14],其中中国隐性饥饿的人口达到 3 个亿。对大多数人来说,减少微量营养素缺乏症可通过提高可食用植物在日常饮食中的比例、发掘可食用植物的营养潜力来实现。豇豆作为一种重要的农产品,其含有丰富的蛋白质、矿物质和维生素,脂肪较少^[15],可平衡膳食并有望用于降低隐性饥饿人口。本研究以 243 份长豇豆品种为试验材料进行了两年田间试验和生化成分测定,并对维生素 C、干物质、氨

基酸组分、糖类、矿质元素含量等 28 项营养指标进行遗传变异分析,进一步明晰了长豇豆的营养价值;同时依照此结果绘制出的长豇豆主要营养成分表,可直观地指导人们通过进食长豇豆合理的摄入所需的维生素和人体必需矿物质,有效降低微量营养素缺乏症。

基本统计分析结果显示,长豇豆维生素 C、可溶性糖、矿质元素、干物质含量等性状春季普遍高于秋季,这表明不同种植时期对于长豇豆的营养积累具有一定影响。春季栽培于 4 月初播种,光照时间长,温差较大,生长周期长,有利于长豇豆的生长及营养物质的积累;而秋季栽培于 7 月下旬播种,湖北高温多雨的环境不利于品质形成。因此,在后续试验中,可将试验安排在春季,可有效提高其营养物质含量,保证良好的环境控制减小环境变异,最大程度的降低环境方差在总表型方差中所占的比例,增加遗传方差的比率,进而提高育种选择准确性,改进遗传增益。

遗传与变异分析结果显示,丙氨酸、甘氨酸、粗纤维含量的变异系数均低于 15%,表型相对稳定;其他性状变异系数均高于 15%,进行遗传改良的潜力较大,长豇豆品种个体间的差异明显,在后续遗传育种中可优先对这些营养性状表现优异的品种进行选育。葡萄糖、果糖、蔗糖、苏氨酸、锌、铁、钙、硒的遗传力皆超过 95%,可从中筛选出理想种质作为改良亲本,如双半豇豆 J0091、金豇绿龙、江蔬早豇一号这三个品种,可用于开发高糖品种。虽然有研究表明,植物矿质元素的生物有效性强烈受土壤特征和其他环境因素影响^[16],但本试验中土壤等环境因素的差异比较小,矿物质含量受基因型影响比较明显,因此对于环境差异较小时候的矿物质含量遗传改良还是具有一定参考意义的。亮氨酸、甲硫氨酸含量的广义遗传力估算结果低于 40%,其中亮氨酸含量的广义遗传力低至 7.89%,属于低遗传力值性状,这类性状遗传改良的难度偏大。

通过相关性分析、聚类分析和主成分分析等方法对种质资源性状遗传分析研究,已广泛运用于种质分类、育种以及多样性研究中[17-18]。通过计算主成分综合得分得到排名前 10%的品种: 花豆角、南平白皮短豇豆、鄂豇一号、圈圈豆、摇钱树、线豆角、创丰八号、ZYZ-4958、超级豇豆、902 豆角等 24 个品种,该排名体现的是品种特异性状的聚集程度。得分高的前 10%种质主要来自于II、III类群,可根据杂交亲本选配原则,以具有较多优良性状的亲本作母本,选用不同类群的亲本进行配组: 超级豇豆虽然主成分综合评分高,但维生素 C 含量偏低(4.51 mg/100g),可用 ZYZ-4978(37.43 mg/100g)作父本进行杂交性状改良; 鄂豇豆 7 号的类黄酮含量(1.21 mg/g)偏低可与东方红揭上豆角(9.06 mg/g)配组杂交; 春秋红无架豆的总糖含量(19.81 mg/g)偏低,可与江蔬早豇一号(291.11 mg/g)配组杂交。定向筛选长豇豆品种,为性状改良和优质品种选育奠定基础。

参考文献

- [1] Gonçalves A, Goufo P, Barros A I, Domínguez-Perles R, Trindade H, Rosa E A, Ferreira L, Rodrigues M. Cowpea (*Vigna unguiculata* L. Walp), a renewed multipurpose crop for a more sustainable agri-food system: nutritional advantages and constraints. Journal of the science of food and agriculture, 2012, 96(9):2941-51.
- [2] Moura J D, Rocha M D, Gomes R L, Filho F R, Silva K J, Ribeiro V Q. Path analysis of iron and zinc contents and others traits in cowpea. Crop Breeding and Applied Biotechnology, 2012,12(4):245–252.
- [3] 张瑜琨,蔺国仓,唐勇.不同豇豆品种性状比较及产量与品质的相关性分析.黑龙江农业科学,2021,(03):57-61.

 Zhang Y K, Lin G C, Tang Y. Characters comparison of different cowpea varieties and correlation analysis between yield and qualities. Heilongjiang Agricultural Sciences, 2021,(03):57-61.
- [4] 唐建洲,张志元,胡丽琴,游勇,罗永兰.植物营养剂对豇豆产量、还原糖、维生素 C 及有机硒含量的影响.湖北农业科学,2014,53(01):41-42. Tang J Z, Zhang Z Y, Hu L Q, You Y, Luo Y L. Effects of plant nutrients on the yield reducing sugar, vitamin C and organic selenium content of cowpea(vigna unguiculata). Hubei Agricultural Sciences, 2014,53(01):41-42.
- [5] 董君暘,汪宝根,吴晓花,鲁忠富,汪颖,王尖,李国景,吴新义.之豇系列长豇豆品种营养品质分析.浙江农业科学,2022,63(05):1042-1047.

 Dong J X,Wang B G,Wu X H,Lu Z F,Wang Y,Wang J,Li G J,Wu X Y.Nutritional quality analysis of Zhijiang series asparagus bean varieties.Zhejiang Agricultural Sciences,2022,63(05):1042-1047.

- [6] 张朝明,赵坤,唐胜,黎兆山,陈梅,周作高,周生茂.6 个豇豆品种农艺性状的相关性、主成分及聚类分析.西南农业学报,2021,(03):501-507.

 Zhang C M, Zhao K, Tang S, Li Z S, Chen M, Zhou Z G, Zhou S M. Correlation, Principal Component and Cluster Analysis of Agronomic Traits of Six Cowpea Varieties. Southwest China Journal of Agricultural Sciences, 2021,(03):501-507.
- [7] Bai Z, Huang X, Meng J, Kan L, Nie S. A comparative study on nutritive peculiarities of 24 Chinese cowpea cultivars. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 2020,146(10):111814
- [8] Gumede, M.T.; Gerrano, A.S.; Amelework, A.B.; Modi, A.T. Analysis of Genetic Diversity and Population Structure of Cowpea (*Vigna unguiculata* (L.) Walp) Genotypes Using Single Nucleotide Polymorphism Markers. Plants, 2022, 24(11): 3480.
- [9] 詹园凤,党选民,戚志强,贺滉,杨衍.长豇豆种质资源主要农艺及品质性状分析.南方农业学报,2015,46(11):2006-2010.

 Zhan F Y, Dang X M, Qi Z Q, He H, Yang Y. Main agronomic and quality characters of asparagus bean(*Vigna unguiculata* ssp. *sesquipedalis*) germplasms.Journal of Southern Agriculture, 2015,46(11):2006-2010.
- [10] 黎飞,徐秋芳,臧宪朋,赖亿玉,程维舜,徐幼平,蔡新忠.番茄子叶总蛋白双向电泳体系的建立.园艺学报,2010,37(4):661–668.

 Li F, Xu Q F, Zang X P, Lai Y Y, Cheng W S, Xu Y P, Cai X Z. Establishment of two-dimensional electrophoresis system of tomato cotyledons. Acta Horticulturae Sinica, 2010,37(4):661–668.
- [11] 刘海英,王华华,崔长海,王曼,郭净净,文昭普,李安琪.可溶性糖含量测定(蒽酮法)实验的改进.实验室科学, 2013,16(2):19–20.

 Liu H Y, Wang H H, Cui C H, Wang M, Guo J J, Wen Z P, Li A Q. Experiment improvement of the soluble sugar content determination by enthrone colorimetric method. Laboratory Science, 2013,16(2):19–20.
- [12] 陈禅友,胡金萍,刘伟,胡志辉,张凤银,雷刚.豇豆品种品质性状及其遗传参数分析.江汉大学学报(自然科学版),2007,35(03),64-68.

 Chen C Y, Hu J P, Liu W, Hu Z H, Zhang F Y, Lei G. Estimates of genetic parameters for fresh pod quality characters in asparagus bean (*Vigna unguiculata* (L.) ssp. *sesquipedalis* Verd.). Journal of Jianghan University(Natural Sciences), 2007,35(03),64-68.
- [13] Beal T, Massiot E, Arsenault J E, Smith M R, Hijmans R J. Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes. PLoS ONE, 2017, 12(4): e0175554.
- [14] Bongaarts, J. FAO, IFAD, UNICEF, WFP and WHO The State of Food Security and Nutrition in the World 2020. Transforming food systems for affordable healthy diets FAO, 2020, 320 p. Population and Development Review, 2021, 47(6): 283-572.
- [15] Carvalho M, Lino-Neto T, Rosa E A, Carnide V. Cowpea: a legume crop for a challenging environment. Journal of the science of food and agriculture, 2017, 97(13): 4273-4284.
- [16] Sun C, Sun N, Ou Y, Gong B, Jin C, Shi Q, Lin X. Phytomelatonin and plant mineral nutrition: current knowledge. Journal of experimental botany, 2022, 73(17): 5903-5917.
- [17] 吴欣明,郭璞,池惠武,方志红,石永红,王运琦,刘建宁,王赞,王学敏.国外紫花苜蓿种质资源表型性状与品质多样性分析.植物遗传资源学报,2018,19(1):103-111
 - Wu X M, Guo P, Chi H W, Fang Z H, Shi Y H, Wang Y Q, Liu J N, Wang Z, Wang X M. Diversity analysis of phenotypic traits and quality characteristics of alfalfa (*Medicago sativa*) introducted from abroad germplasm resources. Journal of Plant Genetic Resources, 2018,19(1):103-111.
- [18] 王文晓,程浩,徐玉凤,葛红,杨树华,赵鑫,武荣花,贾瑞冬. 带叶兜兰 5 个野生居群表型多样性分析. 植物遗传资源学报,2020,21(5):1196-1206 Wang W X, Cheng H, Xu Y F, Ge H, Yang S H, Zhao X, Wu R H, Jia R D. Phenotypic diversity analysis of five wild *Paphiopedilum hirsutissimum* populations. Journal of Plant Genetic Resources, 2020, 21(5): 1196-1206.