DOI: 10.13430/j.cnki.jpgr.20221118001

宁夏春麦区小麦资源株高、籽粒性状及抗病性分析

孙刚,陈佳静,姚明明,毛馨缘,李清峰,刘彩霞,刘凤楼,李文侠,王掌军*

(宁夏大学农学院, 银川 750021)

摘 要: 为评价我国 4 个主要育种阶段来源于不同麦区的小麦资源在宁夏春麦区的株高、籽粒性状和抗病性,以及为宁夏小麦 育种提供可行的评价方法和优异种质,本研究以 4 个育种阶段共 228 份小麦资源为材料,采用熵值赋权 DTOPSIS 法对这些种 质的株高和籽粒性状进行综合评价,以筛选优良育种亲本。通过田间试验结合18个与宁夏小麦主要病害相关的分子标记对这 些材料的抗病性及抗病基因分布情况进行评价。结果表明,从阶段I~IV,材料的株高和蛋白质性状呈降低趋势,而穗粒数和 粒重呈增加趋势。依 Ci 值筛选出 11 份材料(占总数 5%),分别为红兴隆 3 号、扬糯麦、新疆小麦、上林小麦、宁春 45 号、 会宁 19 号、宁春 32 号、M6445、甘春 25 号、永良 15 号和小冰 33 号。在田间, 228 份材料中分别有 181 份、220 份和 83 份 材料表现抗条锈病、叶锈病和白粉病。以上11份材料在田间试验中对条锈病和叶锈病也表现出较好的抗性, 其中红兴隆3号、 上林小麦和小冰 33 号兼抗白粉病。此外, 18 个与抗病相关的分子标记在 228 份材料中表现出不同比例的扩增。总之, 基于 熵值赋权的 DTOPSIS 法和小麦主要病害相关分子标记检测可用于国内小麦资源不同育种阶段的评价, 筛选出综合性状优良的 小麦资源可作为宁夏小麦育种的候选亲本。

关键词: 小麦; 株高; 籽粒性状; DTOPSIS 法; 抗病性; 分子标记

Analysis of Wheat Resources for Plant Height, Grain Traits, and

Diseases Resistance cultivated in Ningxia Spring Wheat Region

SUN Gang, CHEN Jia-jing, YAO Ming-ming, MAO Xin-yuan, LI Qing-feng, LIU Cai-xia LIU Feng-lou, LI Wen-xia, WANG Zhang-jun*

(Agricultural College, Ningxia University, Yinchuan 750021, China)

Abstract: This study attempted to evaluate the plant height, grain traits, and diseases resistance of wheat resources derived from different wheat regions of China at four major breeding stages that were cultivated in Ningxia province, China, in order to provide the methods and excellent germplasms for local wheat breeding in future. A total of 228 wheat resources at four breeding stages were used. The entropy-weighted DTOPSIS method was used for evaluating the plant height and grain traits in order to select good breeding parents. The disease resistance and proportion of resistance genes were evaluated by field test, in combination with genotyping by 18 molecular markers that associate with major wheat diseases. The results showed that, at the breeding stages I to IV, the plant height and the protein traits were gradually decreased, while the grain number and grain weight were gradually increased. Based on the Ci value, 11 genotypes (Hongxinglong No.3, Yangnuomai, Xinjiang wheat, Shanglin wheat, Ningchun No.45, Huining No.19, Ningchun No.32, M6445, Ganchun No.25, Yongliang No.15 and Xiaobing No.33) ranking top 5% in popupalation were identified. In the field, there were 181, 220 and 83 in 228 genotypes that were resistant to stripe rust, leaf rust and powdery mildew, respectively. These 11 gentoypes showed good resistance to stripe rust and leaf rust, and three of them, namely Hongxinglong No.3, Shanglin wheat, and Xiaobing No.33, were resistant to powdery mildew. Genotyping by using 18 functional markers associated with diseases resistance, revealed proportions of genotypes that carry respective resistance genes. Collectively, the DTOPSIS method based on entropy weighting and molecular marker associated with major wheat diseases can be used to evaluate the wheat resources at the different breeding stages. These 11 wheat genotypes with good performance can be used as candidate parents for wheat

收稿日期:

修回日期:

网络出版日期:

第一作者研究方向为小麦遗传育种,E-mail: sungang2812@163.com

通信作者:王掌军,研究方向为小麦遗传育种,E-mail:wangzj-gs@126.com

基金项目: 国家自然科学基金项目(32160452);宁夏农业育种专项(2018NYYZ02);宁夏自然科学基金项目(2021AAC03069)

Foundation projects: National Natural Science Foundation of China(32160452); Ningxia Hui Autonomous Region Agricultural Breeding Special Project(2018NYYZ02); Ningxia Natural Science Foundation Project(2021AAC03069)

breeding in Ningxia, China.

Key words: wheat (Triticum aestivum L.); plant height; grain trait; DTOPSIS; disease resistance; molecular marker

小麦(Triticum aestivum L.)是全球人类食用的最重要谷物之一[1]。在我国,小麦是仅次于玉米、水稻 的第三大粮食作物,在保证粮食生产和保障国家粮食安全中占有重要地位[2]。我国小麦生产先后经历了恢复 增长、抗病稳产、矮化高产和高产优质并进等育种阶段,在产量、品质和抗病性等方面均有显著提升[3-4]。 而由于人工选择和骨干亲本单一化使用,造成小麦大量基因丢失,导致当今栽培小麦极易遭受病虫害侵染, 不能满足高产优质育种需要。高产、优质及抗病性仍是目前小麦的主要育种目标。通过广泛搜集和深入评 价小麦资源并应用于育种,进而培育优异新品种,可以促进小麦产业可持续发展、保证国家粮食安全。经 过小麦几个育种阶段随品种不断更新,产量和质量有了显著提升。其中,株高和籽粒性状改良在小麦高产 优质育种中发挥着明显作用,了解株高与籽粒性状的演变规律对未来小麦品种的育种设计具有重要参考价 值[5-7]。李红霞等[8]研究宁夏小麦主栽品种农艺性状演变过程,发现穗粒数增加和株高降低对提高产量起关 键作用。李润芳等[9]以山东省不同年代的50个小麦主栽品种为材料,分析农艺性状演变规律,发现随着年 代推移,株高呈极显著降低而千粒重呈极显著增加趋势。王成社等[10]以关中地区主栽品种为材料,分析主 要农艺性状的演变,认为未来小麦育种应在稳定单位面积穗数基础上增加穗粒数和千粒重,通过提升单穗 生产力来增产。李爱国等[11]利用河南审定的555个品种,通过统计和变异分析其品质演变规律,认为今后 应重点改良蛋白质性状。宋健明等[12]研究近年山东审定小麦品种品质演变情况,结合差异显著性分析,发 现沉降值、形成时间和稳定时间等指标均达到显著差异,说明山东省小麦品质改良空间较大。目前,在小 麦品种性状评价中, 由于各性状指标间无统一度量, 研究人员采用不同评价方法筛选优异种质, 如 DTOPSIS 法[13] (Dynamic technique for order preference by similarity to ideal solution,动态逼近理想解排序法)、主成分 分析法[14]和灰色度关联分析法[15]等,但这些方法在计算不同指标对目标效果的贡献时一般采用等权或经验 赋值,不能客观地赋予指标权重。熵权法的权重计算完全按照指标间数值的离散程度来设置,能有效排除 人为干扰,是一种客观赋权方法,因而被育种家广泛使用[16-19]。基于熵值赋权的 DTOPSIS 法在小麦上鲜有 报道[20]。

小麦常遭受一些病害危害,对产量和品质均造成严重影响。宁夏属于小麦条锈病流行区域,叶锈病也 出现逐年严重的趋势, 白粉病近年也成为宁夏生产第一大病害[21]。化学防治已取得一定成效, 但浪费人力、 物力和财力,尤其造成环境污染。因此,选育和种植抗病品种是防治小麦病害最经济、有效、环保的措施[22]。 近年来,利用与抗病性连锁的分子标记进行分子标记辅助育种可显著提高小麦的综合抗病能力[23-25]。张林 等[26]利用 24 个与小麦抗叶锈基因紧密连锁的 30 个分子标记对 12 个山东小麦主栽品种(系)进行检测,发 现济南 17 携带 Lr16、矮抗 58 和山农 20 携带 Lr26。张华等[27]对 153 份四川小麦主推品种进行分子标记检 测,发现携带抗条锈病基因 Yr5、Yr9、Yr10、Yr15、Yr18 和 Yr26 分别有 12、25、77、12、4 和 90 份材料。 陈天青等[^{28]}在 135 份贵州地方小麦中,利用 4 个赤霉病抗病基因(Fhb1, Fhb2, Fhb4, Fhb5)连锁的标记 检测到抗病的种质 70 份。王掌军等[29]利用分子标记检测小麦品种间杂交 F2代 331 个单株,发现抗白粉、条 锈和叶锈病单株分别为68、54和52个,其中,兼抗白粉和条锈、白粉和叶锈、条锈和叶锈以及白粉病的 三种病害的单株各 50、44、32 和 29 个。彭振英等[^{30]}用 2 个抗纹枯病分子标记 *Xwmc273* 和 *Xbarc172* 对 354 份小麦品种进行检测,发现黑麦 AR132 有 Xbarc172 检测结果。针对不同阶段国内小麦在宁夏种植的表现缺 乏系统性研究且宁夏高产、优质、抗病小麦品种资源相对匮乏、重要性状评价方法单一。本研究利用熵值 赋权的 DTOPSIS 法对 228 份种植于宁夏春麦区小麦资源的株高和籽粒性状及抗病性进行田间调察和抗病性 相关 QTL/基因进行分子标记分析,以筛选综合性状优异的品种资源,为宁夏小麦育种及优异亲本挖掘奠定 基础。

1 材料与方法

1.1 试验材料

以宁夏大学小麦育种课题组收集的 228 份来源于国内不同区域的小麦品种资源为材料 (表 1)。其中,宁夏本地材料 56 份,外地材料 172 份。参考育种家对国内小麦品种改良阶段的划分^[3,4],将 228 份小麦划分

为I(1950年以前)、II(1950~1978年)、III(1979~1999年)和IV(2000年至今)4个阶段,各有 33、18、35 和 142份(表 1)。供试材料分别于 2020—2022年春季种植于宁夏大学教学实验农场(E: $106^{\circ}14'12''$,N: $38^{\circ}13'3''$),每个品种种植 5 行区,行长 1.10 m,行宽 0.20 m,每行点播 40 粒种子,田间管理同常规品种大田管理水平。

表 1 材料名称、来源、所处阶段及育成年份

Table 1 Name, origin, stage and breeding time of materials

编号 Code	名称 Name	来源 Origin	阶段(育成时间) Stage (breeding time)	编号 Code	名称 Name	来源 Origin	阶段(育成时间) Stage (breeding time)	编号 Code	名称 Name	来源 Origin	阶段(育成时间) Stage (breeding time)
S1	新疆小麦	新疆	I (—)	S77	小冰 33 号	吉林	III (1995)	S153	宁春 47 号	宁夏	IV (2008)
S2	墨脱小麦	西藏	I (—)	S78	矮孟牛	山东	III (1981)	S154	宁春 48 号	宁夏	IV (2009)
S3	白皮小麦	内蒙古	I (—)	S79	92R137	江苏	III(1992)	S155	宁春 50 号	宁夏	IV (2010)
S4	大白皮	内蒙古	I (—)	S80	扬麦 158	江苏	III(1993)	S156	宁春 53 号	宁夏	IV (2014)
S5	小和尚头	甘肃	I (—)	S81	温麦8号	浙江	III(1993)	S157	宁 2038	宁夏	IV (2014)
S6	红齐麦	甘肃	I (—)	S82	皖麦 38 号	安徽	III(1997)	S158	宁春 54 号	宁夏	IV (2016)
S7	白芒春麦	甘肃	I ()	S83	绵阳 26	四川	III(1995)	S159	宁春 55 号	宁夏	IV (2017)
S8	红芒春麦	甘肃	I (—)	S84	绵阳 26 号	四川	III(1995)	S160	宁春 56 号	宁夏	IV (2018)
S9	无芒春麦	甘肃	I (—)	S85	毕麦 26	贵州	III(1985)	S161	宁春 57 号	宁夏	IV (2019)
S10	红秃子	宁夏	I (—)	S86	兴育7号	贵州	III(1999)	S162	繁 687	宁夏	IV (2020)
S11	火麦	宁夏	I ()	S87	新春 26 号	新疆	IV (2007)	S163	鉴 076	宁夏	IV (2020)
S12	毛火麦	宁夏	I (—)	S88	新春 29 号	新疆	IV (2008)	S164	ND646	宁夏	IV (2020)
S13	白红火麦	宁夏	I ()	S89	新春 30 号	新疆	IV (2009)	S165	MJ346	宁夏	IV ()
S14	山麦	宁夏	I ()	S90	新春 37 号	新疆	IV (2012)	S166	M6445	宁夏	IV (2021)
S15	小红皮	宁夏	I (—)	S91	青春 38	青海	IV (2005)	S167	M7723	宁夏	IV (2021)
S16	大红麦	宁夏	I ()	S92	蒙麦 36 号	内蒙古	IV (2000)	S168	永 131921	宁夏	IV ()
S17	黄-3	宁夏	I (—)	S93	巴丰 5 号	内蒙古	IV (2005)	S169	永 132256	宁夏	IV ()
S18	大青芒	黑龙江	I ()	S94	巴优 2 号	内蒙古	IV (2005)	S170	永 13H887	宁夏	IV ()
S19	秃芒麦	山东	I ()	S95	咸农 2344	陕西	IV ()	S171	锦麦 52	辽宁	IV ()
S20	小三月黄	河北	I ()	S96	武农 148	陕西	IV (2000)	S172	烟农 19 号	山东	IV (2001)
S21	小佛手	河南	I (—)	S97	西农 2000	陕西	IV (2006)	S173	济麦 20 号	山东	IV (2004)
S22	大口麦	河南	I ()	S98	西农 889	陕西	IV (2005)	S174	济麦 22 号	山东	IV (2006)
S23	黄绿-3	河南	I ()	S99	武农 168	陕西	IV ()	S175	三抗十号	山东	IV (2016)
S24	江西早	湖北	I ()	S100	武春 3号	甘肃	IV (2001)	S176	青农 2 号	山东	IV (2010)
S25	白蒲	浙江	I ()	S101	陇春 23 号	甘肃	IV (2004)	S177	济麦 24	山东	IV (2019)
S26	云南小麦	云南	I ()	S102	陇春 30 号	甘肃	IV (2004)	S178	山农 102	山东	IV (2021)
S27	云南大穗	云南	I ()	S103	陇春 24 号	甘肃	IV (2005)	S179	农 393	北京	IV ()
S28	中国春	四川	I (—)	S104	兰天 17 号	甘肃	IV (2005)	S180	农大 135	北京	IV (2004)
S29	中国(phlb)	四川	I (—)	S105	甘春 21 号	甘肃	IV (2005)	S181	石麦 14 号	河北	IV (2004)
S30	成都光头	四川	I ()	S106	银春8号	甘肃	IV (2005)	S182	金禾 9123	河北	IV (2012)
S31	扬糯麦	重庆	I (—)	S107	武春 5 号	甘肃	IV (2005)	S183	衡观 35	河北	IV (2004)
S32	上林小麦	广西	I (—)	S108	武春 4 号	甘肃	IV (2007)	S184	周麦 17	河南	IV (2004)
S33	骊英5号	江苏	II (1923)	S109	甘春 25 号	甘肃	IV (2008)	S185	中育9号	河南	IV (2004)
S34	喀什1号	新疆	II (—)	S110	中梁 29	甘肃	IV (2009)	S186	矮抗 58	河南	IV (2005)
S35	定西 24	甘肃	II (1971)	S111	甘春 24 号	甘肃	IV (2009)	S187	郑麦 1308	河南	IV ()
S36	斗地1号	宁夏	II (1969)	S112	兰天 24 号	甘肃	IV (2009)	S188	兰考 198	河南	IV (2011)
S37	宁春1号	宁夏	II (—)	S113	陇春 27 号	甘肃	IV (2009)	S189	郑州 6 号	河南	IV (2011)
S38	宁春2号	宁夏	II (—)	S114	陇春 29 号	甘肃	IV (2009)	S190	安农 1124	安徽	IV (2018)
S39	宁春3号	宁夏	II (—)	S115	陇春 26 号	甘肃	IV (2010)	S191	国红6号	安徽	IV (2019)
S40	金麦 4 号	陕西	II (—)	S116	武春6号	甘肃	IV (2010)	S192	鄂麦 170	湖北	IV (2014)
S41	内乡5号	河南	II (1958)	S117	武春7号	甘肃	IV (2010)	S193	金丰 0515	江苏	IV ()
S42	兰考 380	河南	II (—)	S118	武春8号	甘肃	IV (2012)	S194	徐州 25	江苏	IV (2000)
S43	郑州 741	河南	II (—)	S119	银春9号	甘肃	IV (2013)	S195	扬麦 11 号	江苏	IV (2001)
S44	苏麦 3 号	江苏	II (1970)	S120	酒春 6 号	甘肃	IV (2013)	S196	扬麦 13 号	江苏	IV (2002)
S45	克山8号	黑龙江	II (—)	S121	甘育2号	甘肃	IV (2014)	S197	扬麦 14 号	江苏	IV (2004)
S46	新曙光1号	黑龙江	II (1971)	S122	甘春 26 号	甘肃	IV (2014)	S198	扬麦 15 号	江苏	IV (2004)
S47	东农 101	黑龙江	II (1975)	S123	陇春 34 号	甘肃	IV (2015)	S199	扬麦 16 号	江苏	IV (2004)
S48	红兴隆 3 号	黑龙江	II (—)	S124	甘育3号	甘肃	IV (2015)	S200	扬麦 18 号	江苏	IV (2005)

表 1 (续) Table 1 (continued)

编号 Code	名称 Name	来源 Origin	阶段(育成时间) Stage (breeding time)	编号 Code	名称 Name	来源 Origin	阶段(育成时间) Stage (breeding time)	编号 Code	名称 Name	来源 Origin	阶段(育成时间) Stage (breeding time)
S49	铁春1号	辽宁	II (—)	S125	甘春 27 号	甘肃	IV (2016)	S201	宁糯麦1号	江苏	IV (2008)
S50	吉春 1016	吉林	II ()	S126	甘春 32 号	甘肃	IV (2016)	S202	扬麦 19 号	江苏	IV (2008)
S51	台中 23	台湾	II ()	S127	武春9号	甘肃	IV (2016)	S203	扬麦 20 号	江苏	IV (2010)
S52	新疆	新疆	III (1997)	S128	张春 23 号	甘肃	IV (2016)	S204	南农 0686	江苏	IV (2010)
S53	巴丰1号	内蒙古	III (1999)	S129	会宁 19 号	甘肃	IV (2017)	S205	杨糯麦1号	江苏	IV (2010)
S54	甘春 20 号	甘肃	III (1997)	S130	酒春8号	甘肃	IV (2017)	S206	宁麦9号	江苏	IV (2010)
S55	宁春4号	宁夏	III (1980)	S131	掖丰 315	甘肃	IV (2017)	S207	扬麦 21 号	江苏	IV (2011)
S56	宁春5号	宁夏	III (1982)	S132	酒春7号	甘肃	IV (2018)	S208	扬麦 22 号	江苏	IV (2012)
S57	宁春 10 号	宁夏	III (1988)	S133	陇春 39 号	甘肃	IV (2018)	S209	镇麦 10	江苏	IV (2013)
S58	宁春 12 号	宁夏	III (1983)	S134	甘育 4 号	甘肃	IV (2018)	S210	扬麦 23 号	江苏	IV (2014)
S59	宁春 14 号	宁夏	III (1990)	S135	酒春9号	甘肃	IV (2018)	S211	扬麦 24 号	江苏	IV (2015)
S60	宁春 15 号	宁夏	III (1991)	S136	酒春 12 号	甘肃	IV (2021)	S212	扬麦 25 号	江苏	IV (2016)
S61	宁春 16 号	宁夏	III (1992)	S137	银春 10 号	甘肃	IV (2021)	S213	宁麦 26	江苏	IV (2016)
S62	宁春 17 号	宁夏	III (1987)	S138	武春 10 号	甘肃	IV (2021)	S214	明麦 133	江苏	IV (2017)
S63	宁春 18 号	宁夏	III (1997)	S139	永良 15 号	宁夏	IV (2000)	S215	扬辐麦 2054	江苏	IV (2018)
S64	宁春 19 号	宁夏	III (1988)	S140	永良 26 号	宁夏	IV ()	S216	华麦 1028	江苏	IV (2018)
S65	宁春 20 号	宁夏	III (1989)	S141	宁春 32 号	宁夏	IV (2002)	S217	扬麦 27 号	江苏	IV (2020)
S66	宁春 21 号	宁夏	III (1995)	S142	宁春 33 号	宁夏	IV (2002)	S218	扬辐麦 2049	江苏	IV (2020)
S67	宁春 27 号	宁夏	III (1998)	S143	宁春 35 号	宁夏	IV (2003)	S219	苏麦 899	江苏	IV (2022)
S68	宁春 31 号	宁夏	III (1992)	S144	宁春 37 号	宁夏	IV (2005)	S220	内麦8号	四川	IV (2003)
S69	陕 229	陕西	III (1993)	S145	宁春 38 号	宁夏	IV (2005)	S221	内麦9号	四川	IV (2004)
S70	豫麦 56 号	河南	III (1999)	S146	宁春 39 号	宁夏	IV (2006)	S222	内麦 10 号	四川	IV (2004)
S71	石麦 4185	河北	III (1999)	S147	宁春 40 号	宁夏	IV (2005)	S223	内麦 11 号	四川	IV (2004)
S72	河东乌麦	山西	III (1995)	S148	宁春 41 号	宁夏	IV (2005)	S224	内麦 836	四川	IV (2008)
S73	新克旱9号	黑龙江	III (1988)	S149	宁春 42 号	宁夏	IV (2006)	S225	蜀麦 482	四川	IV (2008)
S74	克丰3号	黑龙江	III(1982)	S150	宁春 43 号	宁夏	IV (2007)	S226	川麦 54	四川	IV (2009)
S75	克涝 4 号	黑龙江	III(1991)	S151	宁春 44 号	宁夏	IV (2007)	S227	内麦 3416	四川	IV ()
S76	克育 14 号	黑龙江	III (1994)	S152	宁春 45 号	宁夏	IV (2007)	S228	云麦 52	云南	IV (2007)

^{—:} 阶段I表示地方品种,其他阶段表示育成时间不详

1.2 株高和籽粒性状测定

参照《小麦种质资源描述规范和数据标准》[31]对株高、穗粒数、穗粒重和千粒重进行测量,15次重复。具体标准及方法:株高从每行区中随机选取3个单株,共15株,用卷尺直接测量并计算平均值;穗粒数和穗粒重以每个株系随机选取15个单穗的粒数并称重,分别取其平均值作为穗粒数和穗粒重;千粒重为1000粒籽粒的重量。利用瑞典波通DA7200型近红外分析仪测定粗蛋白含量、湿面筋含量和沉降值,每份材料分别取约30g,5次重复,在国家小麦改良中心西北分中心(银川)进行测试。

1.3 小麦田间抗病性调查

在小麦成株期,对田间自然发病的条锈病、叶锈病和白粉病抗性进行调查,以感病地方品种红秃子为对照。小麦锈病(条锈、叶锈)田间调察参照 0~5 级标准: 0 级为免疫(Immune, I),1 级为高抗(Highly resistant,HR),2 级为中抗(Moderate resistant,MR),3 级为中感(Moderate susceptible,MS),4 级为高感(Highly susceptible,HS),5 级为极感(Extremely susceptible,ES)[32]。

小麦白粉病抗性调查参照 $0\sim9$ 级标准: 0 级为免疫(I)、 0_i 级为近免疫(Nearly immune, NI)、 $1\sim2$ 级为高抗(HR)、 $3\sim4$ 级为中抗(MR)、 $5\sim6$ 级为中感(MS)、 $7\sim8$ 级为高感(HS)、9 级为极感(ES) $^{[33]}$ 。

1.4 分子标记分析

小麦苗期叶片基因组 DNA 提取采用 CTAB 法[34]。以 18 个小麦抗病基因/QTL 相关分子标记对供试材料进行检测(表 2),引物由上海生工生物工程股份有限公司合成。PCR 反应扩增体系与程序参照王掌军等[35]。扩增产物采用 6%聚丙烯酰胺凝胶电泳检测,银染后拍照观察,并统计扩增结果。

表 2 抗病性相关分子标记引物信息

Table 2 Primer information of molecular markers related to diseases resistance

^{-:} indicate landrace for materials in stage I, while release time unknow for materials in other stages

性状 Trait	基因/QTL Gene/QTL	引物编号 Code of primer	序列(5′—3′) Sequence	片段大小 (bp) Fragment size	退火温度(℃) Annealing temperature	参考文献 Reference
	Sr22	Xfa2019	F:GACGAGCTAACTGCAGACCC R:CTCAATCCTGATGCGGAGAT	234	56	[36]
秆锈病 Stem rust	Sr25	Xwmc221	F:ACGATAATGCAGCGGGGAAT R:GCTGGGATCAAGGGATCAAT	190	56	[36]
	Sr28	Wpt-7004	F:CTCCCACCAAAACAGCCTAC R:AGATGCGAATGGGCAGTTAG	194	56	[36]
	Yr65	Xgwm18	F:GGTTGCTGAAGAACCTTATTTAGG R:TGGCGCCATGATTGCATTATCTTC	205	58	[37]
条锈病 Stripe rust	Yr67	Xcfa2040	F:TCAAATGATTTCAGGTAACCACTA R:TTCCTGATCCCACCAAACAT	245	60	[37]
叶锈病 Leaf rust	Lr67	cfd71	F:CAATAAGTAGGCCGGGACAA R:TGTGCCAGTTGAGTTTGCTC	214	56	[38]
	Qfhs.ifa-5A	Xgwm293	F:TACTGGTTCACATTGGTGCG R:TCGCCATCACTCGTTCAAG	205	55	[39]
赤霉病 Fusarium head blight	Qfhs.ifa-5A	Xgwm304	F:AGGAAACAGAAATATCGCGG R:AGGACTGTGGGGAATGAATG	202	55	[39]
	Qfhi.nau-4B	Xgwm149	F:CATTGTTTTCTGCCTCTAGCC R:CTAGCATCGAACCTGAACAAG	152	55	[39]
纹枯病 Sharp eyespot	Sesl	Xgwm526	F:CAATAGTTCTGTGAGAGCTGCG R:CCAACCCAAATACACATTCTCA	140	55	[39]
	Pm37	Xgwm332	F:CATTTACAAAGCGCATGAAGCC R:GAAAACTTTGGGAACAAGAGCA	193	57	[40]
	Pm55	5EST-237	F:GTTTATCAGGCGGTGCCATA R:GGACTTCTTGCTCCCCTTTC	730	56	[41]
	Pm56	KU.962	F:GGACTTCCTTGTGGCTCAGG R:TGTCAGGGCACCAGTGATAA	400	60	[42]
白粉病	Pm59	XMAG1714	F:ACGAACTGTATCACAACACCCA R:TAAGCCGAGCATGTAGATGGA	188	53	[42]
Powdery mildew	Pm59	Xmag1759	F:GTACGAGTATGGCAACAGC R:CCAACTCTAGGGGCAGATG	204	51	[43]
	Pm61	Xgwm160	F:TTCAATTCAGTCTTGGCTTGG R:CTGCAGGAAAAAAAGTACACCC	196	55	[44]
	Pm61	Xicsx79	F:TTTGAAACTAAAGTTGGGTCA R:GTTAACTATCCATGTGCCAGA	143	55	[44]
	Pm64	WGGBH218	F:CCTTCCTCCGGTAACTCATA R:CGAGCTAGCAATCAGAGAAG	166	53	[45]

1.5 统计分析

采用 Excel 2010 统计数据,使用 SPSS 26.0 对小麦株高和籽粒性状数据进行相关性和变异分析;利用 Tbtools 进行聚类分析;利用 origin2021 软件绘制小麦株高和籽粒性状演变点线图;性状评价方法采用基于熵值赋权的 DTOPSIS 法,具体步骤如下。

(1) 各指标熵值 e_j 计算公式为:

$$e_j = -\frac{1}{\ln N} \sum_{i=1}^{N} P_{ij} \ln P_{ij}$$

式中, P_{ij} 表示第 i 个材料第 j 个指标的值占全部品种第 j 个指标值之和的比重,N 为总数。

(2) 各指标权重 W_j 计算公式为:

$$W_j = \frac{1 - e_j}{\sum_{i=1}^N 1 - e_j}$$

(3) 对小麦 i 个材料 j 个指标建立评价矩阵 A,对矩阵 A 进行无量纲化处理得到矩阵 Z,其正向指标与中性指标公式如下:

正向指标:
$$Z_{ij} = \frac{Y_{ij}}{max(Y_{ij})}$$
 中性指标: $Z_{ij} = \frac{Y_{j0}}{Y_{j0} + abs(Y_{j0} - Y_{ij})}$

式中, Z_{ij} 为第 i 个材料第 j 个性状的观察测量值进行无量纲化处理后的对应值; Y_{ij} 为第 i 个材料第 j 个性状的观察测量值, Y_{i0} 代表第 i 个指标的目标值,abs 代表绝对值。

(4) 建立加权决策矩阵 R, 计算公式如下:

$$R_{ij} = W_j \times Z_{ij}$$

(5) 计算各指标的正 (X_i^+) 和负理想解 (X_i^-) 。

$$X_j^+ = \max(R_{ij})_{ij}$$
$$X_{\bar{i}}^- = \min(R_{ij})_{ij}$$

式中, X_i ⁺和 X_i -的 $j=1,2,3,\dots,n$ 。

(6) 采用欧几里得范数公式计算各材料各性状指标与最佳性状的距离 S_i , 与最差性状间的距离 S_i , 并计算相对接近度 C_i , 根据 DTOPSIS 法分析原理, C_i 值越大表示综合性状越好,公式如下:

$$S_i^+ = \sqrt{\sum_{i=1}^N (R_{ij} - X_j^+)^2}$$

$$S_i^- = \sqrt{\sum_{i=1}^{N} (R_{ij} - X_j^-)^2}$$

$$C_i = \frac{S_i^-}{S_i^+ + S_i^-} C_i \in (0,1)$$

2 结果与分析

2.1 小麦材料株高和籽粒性状的变异、相关性、聚类分析及变化规律

2.1.1 株高和籽粒性状变异性分析

对国内 4 个育种阶段 228 份小麦材料的株高和籽粒性状进行变异分析,其中,I~IV包括的材料数各有33、18、35 和 142 份,结果表明(表 3),单个材料平均株高变幅为 49.49~144.16 cm,I~IV株高平均值分别为 110.76、101.89、86.57 和 79.74 cm,相对于全阶段所有材料平均值 87.03 cm 分别增加 27.27%、17.07%、-0.53%和-8.38%;单个材料平均穗粒数变幅为 30.00~69.00 粒,I~IV平均值分别为 44.00、45.00、47.00 和 50.00 粒,相对于全阶段所有材料平均值 48.39 粒分别增加了-9.07%、-7.01%、-2.87%和 3.33%;单个材料平均穗粒重变幅为 1.02~3.37 g,I~IV平均值分别为 1.67、1.88、2.01 和 2.21 g,相对于全阶段所有材料平均值 2.08 g 分别增加了-19.71%、-9.62%、-3.37%和 6.25%;单个材料平均千粒重变幅为 23.27~56.41 g,I~IV平均值分别为 34.86、38.12、39.05 和 40.47 g,相对于全阶段所有材料平均值 39.26 g 分别增加了-11.21%、-2.90%、-0.53%和 3.08%;单个材料平均租蛋白含量变幅为 13.17~20.64%,I~IV平均值分别为 16.50%、15.95%、15.33%和 15.13%,相对于全阶段所有材料平均值 15.42%分别增加了 7.00%、3.44%、-0.58%和-1.88%;

单个材料平均湿面筋含量变幅为 26.70~43.69%,I~IV平均值分别为 35.15%、34.01%、32.86%和 32.36%,相对于全阶段所有材料平均值 32.97%分别增加了 6.61%、3.15%、-0.33%和-1.85%;单个材料平均沉降值变幅为 24.11~54.61 mL,I~IV平均值分别为 40.21、37.58、36.20 和 34.72 mL,相对于全阶段所有材料平均值 35.79 mL 分别增加了 11.79%、4.48%、0.64%和-3.48%。7 个性状不同育种阶段变异系数表现为:株高全阶段 > IV > III > III > I,穗粒数、千粒重和湿面筋含量I > II > 全阶段 > III > IV,穗粒重和粗蛋白含量I > 全阶段 > III > IV,沉降值I > II > 全阶段 > IV > III = III > IV,沉降值I > II > 全阶段 > IV > III = III > III > III > III = III > III > III > III = III > III = III > III = III = III > III = III

表 3 株高和籽粒性状变异分析

Table 3 The Variable analysis of plant height and grain traits

性状 Trait	阶段 Stage	变异幅度 Variation rang	平均值 Average value	标准差 Standard deviation	变异系数/% Variable coefficient
	I	78.10~144.16	110.76 ↑	14.20	12.82
	II	55.66~124.95	101.89 ↑	18.66	18.31
株高(cm) Plant height	III	52.47~116.10	86.57 ↓	14.17	16.37
ram neight	IV	49.45~132.94	79.74↓	14.62	18.33
	全阶段 All stages	49.45~144.16	87.03—	18.78	21.58
	I	30.00~67.00	44.00 ↓	8.68	19.73
	II	35.00~61.00	45.00 ↓	7.16	16.00
穗粒数(粒) Kernels per spik(kernel)	III	37.00~64.00	47.00 ↓	6.90	14.64
Remeis per spik (kerner)	IV	34.00~69.00	50.00 ↑	7.04	14.07
	全阶段 All stages	30.00~69.00	48.39—	7.67	15.85
	I	1.02~3.19	1.67 ↓	0.42	25.34
	II	1.25~2.72	1.88 ↓	0.37	19.40
穗粒重(g) Kernel weight per spike	III	1.37~2.92	2.01 ↓	0.37	18.45
xerner weight per spike	IV	1.29~3.37	2.21 ↑	0.41	18.44
	全阶段 All stages	1.02~3.37	2.08—	0.45	21.59
	I	23.27~51.55	34.86 ↓	6.66	19.12
	II	26.55~48.85	38.12↓	5.50	14.42
千粒重(g) Fhousand kernels weight	III	29.06~48.74	39.05 ↓	4.66	11.94
indusand kernels weight	IV	30.84~56.41	40.47 ↑	4.17	10.31
	全阶段 All stages	23.27~56.41	39.26—	5.18	13.19
	I	13.17~20.64	16.50 ↑	1.54	9.36
	II	14.14~18.10	15.95 ↑	1.18	7.40
粗蛋白含量(%) Crude protein content	III	13.92~18.34	15.33 ↓	1.01	6.61
crude protein content	IV	13.18~19.00	15.13 ↓	0.85	5.63
	全阶段 All stages	13.17~20.64	15.42—	1.15	7.43
	I	29.09~43.69	35.15 ↑	3.31	9.41
	II	29.44~39.18	34.01 ↑	2.77	8.13
显面筋含量(%) Wet gluten content	III	29.38~38.81	32.86 ↓	2.13	6.49
wet gluten content	IV	26.70~41.58	32.36 ↓	1.94	5.40
	全阶段 All stages	26.70~43.69	32.97—	2.50	7.57
	I	31.58~54.61	40.21 ↑	4.74	11.79
	II	28.28~47.10	37.58 ↑	4.38	11.66
沉降值(mL) Sedimentation value	III	30.46~45.78	36.20 ↑	3.01	8.32
Seamicination value	IV	24.11~45.28	34.72 ↓	3.16	9.11
	全阶段 All stages	24.11~54.61	35.97—	4.02	11.18

^{—、↑、↓:} 分别表示全阶段所有材料该性状平均值、高于和低于全阶段的平均值

2.1.2 株高和籽粒性状相关分析

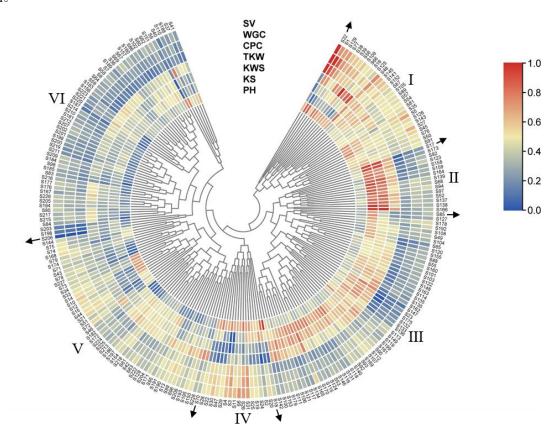
^{—, ↑, ↓:} Indicates average value of all materials in all stages, and higher and lower than that of the mean value of all stages, respectively

对 228 份小麦材料株高和籽粒性状进行相关分析,结果表明(表 4): 株高分别与阶段IV籽粒性状、全阶段所有材料籽粒蛋白质性状、阶段III、IV的湿面筋含量和沉降值呈极显著正相关,与阶段III粗蛋白含量呈显著正相关,与阶段I穗粒重和千粒重呈极显著负相关; 穗粒数与全阶段所有材料千粒重、阶段II沉降值呈显著正相关,与全阶段所有材料蛋白质性状呈极显著负相关; 穗粒重与千粒重、穗粒数在不同阶段均呈极显著正相关,与阶段I和蛋白含量及全阶段所有材料蛋白质性状呈极显著正相关; 千粒重与阶段III湿面筋含量呈显著正相关,与阶段IV蛋白质性状均呈极显著正相关; 其他性状间相关性不显著或为不同程度负相关。

表 4 株高和籽粒性状相关分析

Table 4 The correlation analysis of plant height and grain traits

阶段 Stage	性状 Trait	株高 Plant height	穗粒数 Kernels per spike	穗粒重 Kernel weight per spike	千粒重 Thousand kernels weight	粗蛋白含量 Crude protein content	湿面筋 Wet gluten content
I		-0.163					
П	₹ 4 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1	-0.064					
Ш	穗粒数 Kernels per	0.115					
IV	spike	0.339**					
全阶段 All stages		-0.045					
I		-0.392*	0.623**				
П	穗粒重	0.267	0.756**				
III	kernel weight per	0.297	0.796**				
IV	spike	0.492**	0.850**				
全阶段 All stages		-0.045	0.810**				
I		-0.383*	-0.199	0.616**			
П	千粒重	0.307	0.066	0.605**			
III	Thousand kernels	0.324	0.031	0.568**			
IV	weight	0.466**	0.131	0.557**			
全阶段 All stages		-0.038	0.136*	0.634**			
I		0.476**	-0.331	-0.381*	-0.120		
П	粗蛋白含量	0.302	0.309	0.374	0.000		
III	Crude protein	0.373*	-0.327	-0.188	0.202		
IV	content	0.222**	-0.208*	-0.072	0.271**		
全阶段 All stages		0.477**	-0.303**	-0.285**	-0.065		
I		0.435*	-0.340	-0.293	-0.003	0.985**	
П	72.77 A. A. A.	0.381	0.301	0.388	0.028	0.985**	
III	湿面筋含量 Wet gluten	0.430**	-0.278	-0.084	0.336*	0.972**	
IV	content	0.300**	-0.113	0.036	0.321**	0.961**	
全阶段 All stages		0.496**	-0.249**	-0.194**	0.017	0.976**	
I		0.458**	-0.266	-0.285	-0.101	0.907**	0.896**
П	V-11-	0.243	0.498*	0.426	-0.114	0.923**	0.914**
ш	沉降值 Sedimentati	0.534**	-0.306	-0.194	0.176	0.862**	0.852**
IV	on value	0.315**	-0.020	0.069	0.225**	0.833**	0.850**
全阶段 All stages		0.539**	-0.195**	-0.217**	-0.107	0.889**	0.890**

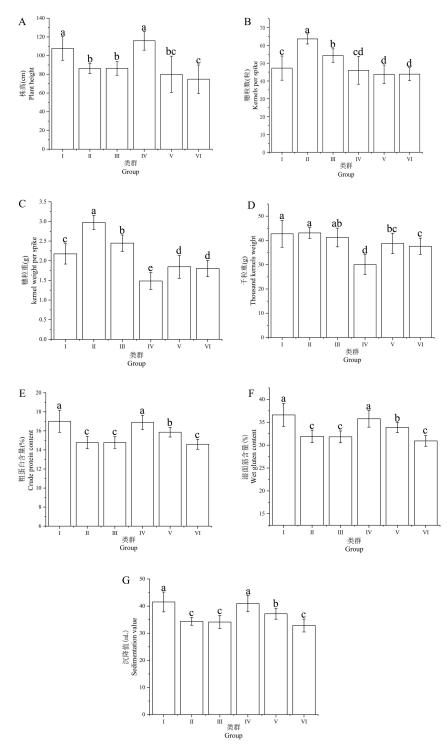

^{*}表示显著相关 (P<0.05), **表示极显著相关 (P<0.01)

2.1.3 株高与籽粒性状聚类分析

^{*}indicated significant correlation (P < 0.05), **indicated extremely significant correlation (P < 0.01)

对 228 份小麦材料的株高和籽粒性状进行聚类分析,所有材料分为 6 个(I~VI)类群,其中第I类群包括 30 份材料(S32~S91),主要聚集了西北春麦区的地方品种及早期选育品种,其中,4 份东北春麦区品种也在此类,这类品种的特点是株高较高,但籽粒性状优异;第II类群包括 15 份材料(S17~S166),主要是以宁夏、甘肃选育的春性品种为主,这类材料株高适宜、产量性状优异;第III类群包括 58 份材料(S85~S142),其中甘肃和宁夏春性品种分别为 28 和 17 份;第IV类群包括 17 份材料(S18~S28),主要为各省地方品种,这类材料株高较高,但蛋白质性状优异;第V类群包括 50 份材料(S70~S144),其来源涵盖我国大部分麦区,无明显特点;第VI类群包括 58 份材料(S206~S41),主要是以江苏为代表的长江中下游麦区的弱冬性品种以及甘肃和宁夏早期选育的品种,这类品种株高较低(图 1)。

六大类群的株高和籽粒性状主要表现为: 平均株高(图 2A), IV>I>III>II>V>VI; 平均穗粒数(图 2B), II>III>IV>VI>V; 平均穗粒重(图 2C), II>III>IV>VI>IV; 平均千粒重(图 2D), II>I >III>V>VI>IV; 平均租蛋白含量(图 2E), I>IV>V>II>III>VI; 平均湿面筋含量(图 2F), I>IV>V>II>III>VI; 平均沉降值(图 2G), I>IV>V>II>III>VI。其中,类群I的平均粗蛋白含量、湿面筋含量和沉降值均最高,分别为 17.01 \pm 1.16%、36.61 \pm 2.53%和 41.54 \pm 3.65mL;类群II的平均穗粒数、穗粒重和千粒重均最高,分别为 63.61 \pm 2.82 粒、2.97 \pm 0.18 g和 43.10 \pm 2.27 g;类群VI的平均株高最矮,为 74.84 \pm 15.17 cm。



PH: 株高; KS: 穗粒数; KWS: 穗粒重; TKW: 千粒重; CPC: 粗蛋白含量; WGC: 湿面筋含量; SV: 沉降值, 箭头表示每个类群的起始位置 PH: Plant height; KS: Kernels per spike; KWS: kernel weight per spike; TKW: Thousand kernels weight; CPC: Crude protein content; WGC: Wet gluten content;

SV: Sedimentation value, The arrow indicates the starting position of each group

图 1 基于株高与籽粒性状的小麦资源聚类图

Fig.1 Cluster diagram of wheat resources based on the plant height and grain traits

A: 株高; B: 穗粒数; C: 穗粒重; D: 千粒重; E: 粗蛋白含量; F: 湿面筋含量; G: 沉降值, 不同小写字母表示显著差异 (P<0.05), 下同A: Plant height; B: Kernels per spike; C: kernel weight per spike; D: Thousand kernels weight; E: Crude protein content; F: Wet gluten content;

G:Sedimentation value, different lowercase letters indicate significant difference (P < 0.05), the same as below

图 2 六大类群小麦品种株高和籽粒性状指标

Fig.2 Plant height and grain traits of six groups in wheat

2.1.4 株高与籽粒性状的变化

种植于宁夏春麦区的小麦随其选育阶段的变化,株高表现为下降趋势,阶段I与II、III与IV的平均株高差异不显著、无明显下降,从阶段 $II\sim III$ 株高的平均值差异显著、下降明显(图 3A);阶段I与II平均穗粒数

差异不显著、增加不明显,阶段 II ~IV的平均值差异显著、增加明显(图 3B);阶段 I~IV的平均穗粒重差异显著、增加明显(图 3C);阶段 I与其他 3 个阶段平均千粒重差异显著、增加明显,而阶段 II、III与 IV的平均值差异不显著、增加不明显(图 3D);四个阶段平均粗蛋白含量、湿面筋含量和沉降值均表现为下降趋势,差异显著、下降明显(图 3E、F 和 G)。

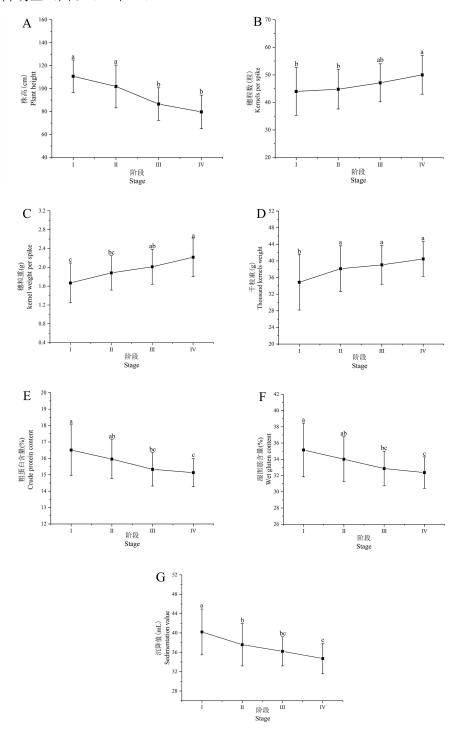


图 3 种植于宁夏小麦材料的株高和籽粒性状的变化

Fig.3 The changes of plant height and grain traits of wheat materials cultivated in Ninxia

2.2 小麦材料株高和籽粒性状评价

2.2.1 单一性状优异的材料及表现

在 228 份小麦材料中,分别选取了株高较矮、籽粒性状优异的 11 份材料 (表 5),其中株高最矮的材料

S185,为 49.45 cm; 穗粒数最多的材料 S166,为 68.57 粒;穗粒重最重的材料 S109,为 3.37 g; 千粒重最重的材料 S109,为 56.41 g;蛋白质性状最好的材料 S32,其粗蛋白含量、湿面筋含量和沉降值分别为 20.64%、43.69%和 54.61mL。

表 5 小麦株高和籽粒性状排名

Table 5 The ranking of plant height and grain traits in wheat

排名 Ranking	株高(cm) Plant height	穗粒数(粒) Kernels per spike	穗粒重(g) Kernel weight per spike	千粒重(g) Thousand kernels weight	粗蛋白含量(%) Crude protein content	湿面筋含量(%) Wet gluten content	沉降值(mL) Sedimentation value
1	S185 (49.45±1.33)	S138 (68.57±6.16)	S166 (3.37±0.29)	S109 (56.41±0.19)	S32 (20.64±0.14)	S32 (43.69±0.37)	S32 (54.61±0.45)
2	S78 (52.47±1.54)	S166 (67.60±3.43)	S17 (3.19±0.23)	S125 (53.60 ± 0.14)	S1 (20.02 ± 0.14)	S1 (43.67 ± 0.37)	S48 (47.10 \pm 0.31)
3	S182 (54.35±1.99)	S17 (66.50±4.64)	S173 (3.16±0.10)	$S16 (51.55 \pm 0.15)$	S129 (19.00 \pm 0.07)	S129 (41.58 \pm 0.21)	S6 (46.14 ± 0.43)
4	S187 (54.60±2.13)	S164 (66.27±2.59)	S138 (3.13 ± 0.34)	S40 (48.85 \pm 0.18)	S31 (18.43 ± 0.25)	S48 (39.18 ± 0.17)	S1 (46.09 ± 0.69)
5	S227 (54.66±2.20)	S173 (65.73±3.55)	$S159 (3.08 \pm 0.29)$	S165 (48.82 ± 0.27)	S77 (18.34 ± 0.08)	S31 (39.07 ± 0.46)	S77 (45.78 ± 0.21)
6	S84 (54.68±1.29)	S68 (64.00 ± 4.40)	S97 (3.02 ± 0.55)	S66 (48.74 \pm 0.14)	S48 (18.10 ± 0.05)	S77 (38.81 ± 0.16)	S31 (45.60 ± 0.71)
7	S224 (54.93±1.84)	S139 (63.57 ± 3.02)	S164 (2.99±0.12)	$S147 (48.49 \pm 0.30)$	S3 (17.96 ± 0.03)	S3 (38.66 ± 0.13)	$$129 (45.28 \pm 0.16)$
8	S223 (54.98±2.93)	S94 (63.50 ± 4.06)	$S165 (2.97 \pm 0.21)$	S39 (48.21 ± 0.11)	S26 (17.84 \pm 0.03)	S26 (38.40 ± 0.18)	S26 (45.17 \pm 0.55)
9	S225 (56.08±3.58)	$S159 (63.23 \pm 3.92)$	$S137 (2.96 \pm 0.31)$	S228 (48.02 ± 0.16)	S39 (17.65 ± 0.06)	S39 (38.23 ± 0.34)	S5 (44.94 ± 0.29)
10	S43 (56.66±4.50)	$S137 (62.33 \pm 3.52)$	S52 (2.92 ± 0.20)	S100 (47.66 ± 0.10)	S109 (17.54 \pm 0.04)	S38 (37.73 ± 0.30)	S27 (43.76 ± 0.44)
11	S172 (58.45±1.35)	S52 (62.00 ± 1.35)	$S147 (2.88 \pm 0.11)$	S1 (47.50 ± 0.02)	S4 (17.52±0.04)	$S109 (37.43 \pm 0.09)$	S3 (43.45 ± 0.22)

2.2.2 熵权法确定各指标的权重

各指标权重排序由高到低依次为:粗蛋白含量>穗粒重>穗粒数>湿面筋含量>千粒重>沉降值>株高,除株高外,其余6个性状权重均高于0.1,对品种综合性状影响较大,也是育种及生产实践中直接影响小麦产量和蛋白质性状的主要指标(表6)。

表 6 各评价指标的熵值和权重

Table 6 The entropy values and weights of each evaluation index

评价指标 Evaluation index	熵值 Entropy	权重 Weight	权重排序 Ranking
株高 Plant height	0.992	0.075	7
穗粒数 Kernels per spike	0.983	0.168	3
穗粒重 Kernel weight per spike	0.982	0.174	2
千粒重 Thousand kernels weight	0.989	0.107	5
粗蛋白含量 Crude protein content	0.977	0.231	1
湿面筋含量 Wet gluten content	0.986	0.140	4
沉降值 Sedimentation value	0.989	0.105	6

2.2.3 基于熵值赋权的 DTOPSIS 法分析

228 份小麦材料的 C_i 值为 $0.155\sim0.699$,平均值为 0.414,其中,排名前 5%的 11 份材料的 C_i 值为 $0.550\sim0.700$,编号依次为 S48、S31、S1、S32、S152、S129、S141、S166、S109、S139 和 S77 (表 7),它 们表现出较优的产量和蛋白质性状。

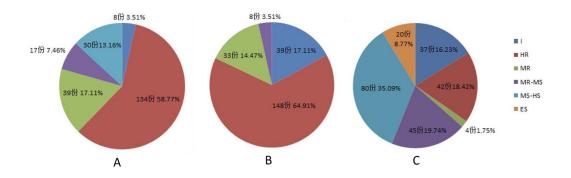
表 7 DTOPSIS 法分析结果

Table 7 The results analyzed by DTOPSIS method

C _i 排名 Ranking	S _i -	$\mathbf{S_{i}}^{+}$	C_{i}	编号 Code	C _i 排名 Ranking	Si	S _i ⁺	Ci	编号 Code
1	0.283	0.122	0.700	S48	85	0.186	0.264	0.414	S136
2	0.245	0.173	0.586	S31	86	0.173	0.246	0.413	S61
3	0.283	0.207	0.577	S1	87	0.169	0.241	0.412	S168
4	0.297	0.219	0.575	S32	87	0.171	0.245	0.412	S70
5	0.229	0.173	0.569	S152	88	0.165	0.238	0.410	S224
6	0.255	0.195	0.567	S129	89	0.183	0.266	0.408	S132
7	0.229	0.179	0.562	S141	90	0.180	0.262	0.407	S163

表 7 (续) Table 7 (continued)

C _i 排名 Ranking	S _i -	S_i^+	Ci	编号 Code	C _i 排名 Ranking	S _i -	S_i^+	C_{i}	编号 Code
8	0.273	0.213	0.561	S166	90	0.169	0.246	0.407	S192
9	0.237	0.187	0.559	S109	90	0.178	0.259	0.407	S127
10	0.247	0.196	0.557	S139	90	0.168	0.246	0.407	S128
11	0.231	0.189	0.550	S77	90	0.167	0.244	0.407	S24
12	0.239	0.199	0.546	S165	91	0.194	0.284	0.406	S176
13	0.220	0.184	0.545	S5	91	0.173	0.254	0.406	S101
14	0.239	0.200	0.544	S94	92	0.174	0.255	0.405	S130
14	0.240	0.201	0.544	S97	92	0.166	0.245	0.405	S225
15	0.220	0.185	0.543	S145	93	0.178	0.263	0.404	S122
15	0.224	0.188	0.543	S39	94	0.173	0.257	0.401	S85
16	0.259	0.218	0.542	S138	94	0.170	0.254	0.401	S160
17	0.240	0.203	0.541	S68	94	0.168	0.251	0.401	S151
18	0.239	0.211	0.532	S137	95	0.170	0.256	0.398	S88
19	0.235	0.192	0.528	S56	95	0.170	0.256	0.398	S155
20	0.215	0.192	0.528	S107	96	0.109	0.250	0.396	S133
						0.173			
20	0.224	0.204	0.523	S92	96		0.249	0.396	S195
21	0.244	0.228	0.517	S159	97	0.187	0.288	0.394	S23
22	0.232	0.219	0.514	S52	97	0.162	0.250	0.394	S28
23	0.207	0.200	0.509	S105	98	0.159	0.248	0.391	S183
24	0.205	0.198	0.508	S143	98	0.170	0.266	0.391	S103
25	0.206	0.202	0.505	S87	99	0.165	0.260	0.389	S55
26	0.241	0.237	0.504	S164	100	0.164	0.258	0.388	S228
27	0.203	0.203	0.501	S35	100	0.160	0.253	0.388	S222
28	0.203	0.205	0.498	S89	101	0.178	0.282	0.387	S4
29	0.203	0.207	0.496	S38	101	0.166	0.264	0.387	S62
30	0.215	0.220	0.494	S153	102	0.173	0.275	0.386	S65
31	0.245	0.253	0.492	S173	103	0.157	0.257	0.379	S220
32	0.212	0.222	0.488	S93	104	0.168	0.276	0.378	S120
33	0.206	0.217	0.487	S140	105	0.161	0.272	0.372	S2
33	0.212	0.224	0.487	S111	106	0.154	0.261	0.371	S167
34	0.198	0.209	0.486	S154	107	0.155	0.264	0.370	S29
34	0.249	0.263	0.486	S17	108	0.161	0.275	0.369	S162
35	0.195	0.208	0.485	S99	109	0.150	0.258	0.368	S78
36	0.194	0.209	0.483	S126	109	0.158	0.273	0.368	S21
37	0.195	0.210	0.481	S50	110	0.151	0.26	0.366	S15
38	0.196	0.212	0.480	S91	110	0.147	0.254	0.366	S34
39	0.212	0.230	0.479	S170	111	0.147	0.256	0.365	S73
39	0.200	0.218	0.479	S90	112	0.149	0.261	0.364	S191
39	0.210	0.229	0.479	S53	113	0.148	0.259	0.363	S226
40	0.198	0.217	0.478	S112	114	0.147	0.262	0.360	S216
41	0.198	0.217	0.477	S125	115	0.155	0.276	0.359	S102
42	0.196	0.216	0.476	S6	116	0.152	0.275	0.357	S47
42	0.195	0.215	0.476	S150	117	0.145	0.263	0.355	S214
43	0.217	0.240	0.475	S123	117	0.145	0.263	0.355	S215
44	0.208	0.232	0.473	S124	117	0.151	0.275	0.355	S60
44	0.197	0.219	0.473	S179	118	0.145	0.265	0.354	S46
44	0.203	0.226	0.473	S180	118	0.146	0.267	0.354	S10
45	0.198	0.221	0.472	S169	118	0.144	0.264	0.354	S178
46	0.211	0.237	0.471	S121	119	0.146	0.267	0.353	S14
47	0.199	0.225	0.470	S16	119	0.144	0.265	0.353	S144
47	0.208	0.234	0.470	S134	120	0.153	0.283	0.351	S86
48	0.189	0.214	0.469	S54	121	0.144	0.267	0.350	S196
48	0.191	0.216	0.469	S201	121	0.142	0.264	0.350	S206
48	0.201	0.228	0.469	S106	122	0.148	0.276	0.349	S157
48	0.190	0.215	0.469	S81	122	0.141	0.264	0.349	S137
49	0.190	0.213	0.467	S27	122	0.147	0.274	0.349	S51
49	0.188	0.214	0.467	S57	123	0.147	0.274	0.349	S184
+7	0.188	0.214	0.40/	33/	143	0.149	0.278	0.348	5184


表 7 (续) Table 7 (continued)

C _i 排名 Ranking	S_{i}	$S_{i}{}^{\scriptscriptstyle +}$	$C_{\rm i}$	编号 Code	C _i 排名 Ranking	$S_{i^{\bar{-}}}$	$S_{i}{}^{\scriptscriptstyle +}$	$C_{\rm i}$	编号 Code
50	0.190	0.219	0.465	S199	123	0.141	0.265	0.348	S223
51	0.218	0.252	0.464	S158	124	0.149	0.282	0.346	S181
52	0.209	0.243	0.463	S117	124	0.145	0.275	0.346	S67
53	0.191	0.224	0.460	S95	126	0.140	0.270	0.342	S172
54	0.192	0.227	0.459	S119	127	0.139	0.269	0.341	S221
55	0.209	0.247	0.458	S82	128	0.139	0.271	0.340	S174
56	0.183	0.219	0.455	S45	128	0.139	0.269	0.340	S208
57	0.200	0.243	0.452	S115	129	0.137	0.269	0.337	S71
58	0.190	0.232	0.451	S149	129	0.139	0.274	0.337	S177
59	0.184	0.225	0.450	S171	129	0.139	0.273	0.337	S203
60	0.188	0.231	0.448	S49	129	0.144	0.285	0.337	S64
60	0.196	0.241	0.448	S118	130	0.142	0.283	0.334	S69
61	0.184	0.228	0.446	S19	131	0.138	0.277	0.332	S18
62	0.183	0.227	0.445	S197	131	0.136	0.274	0.332	S43
63	0.192	0.241	0.444	S142	133	0.136	0.283	0.325	S80
64	0.182	0.229	0.443	S25	134	0.134	0.280	0.324	S211
65	0.180	0.227	0.442	S175	135	0.131	0.275	0.323	S210
66	0.204	0.258	0.441	S133	136	0.136	0.288	0.320	S58
67	0.183	0.232	0.440	S63	136	0.132	0.281	0.320	S189
67	0.182	0.231	0.440	S217	137	0.130	0.278	0.319	S213
67	0.191	0.243	0.440	S131	138	0.136	0.291	0.318	S36
68	0.192	0.246	0.438	S116	139	0.137	0.294	0.317	S156
68	0.176	0.227	0.438	S76	140	0.133	0.289	0.316	S8
69	0.177	0.229	0.436	S96	141	0.133	0.291	0.314	S212
70	0.178	0.230	0.435	S209	142	0.127	0.282	0.311	S185
71	0.179	0.232	0.434	S79	143	0.127	0.284	0.308	S202
71	0.189	0.246	0.434	S146	144	0.128	0.288	0.307	S182
71	0.189	0.247	0.434	S100	145	0.126	0.287	0.305	S218
72	0.199	0.261	0.433	S3	146	0.126	0.289	0.303	S219
73	0.185	0.243	0.432	S30	146	0.125	0.287	0.303	S198
74	0.188	0.249	0.430	S135	147	0.128	0.296	0.302	S190
75	0.178	0.237	0.429	S42	148	0.127	0.297	0.300	S188
75	0.183	0.244	0.429	S194	149	0.120	0.286	0.296	S84
76	0.204	0.273	0.428	S147	150	0.119	0.292	0.289	S98
76	0.182	0.243	0.428	S187	151	0.122	0.304	0.287	S40
76	0.176	0.235	0.428	S113	152	0.118	0.298	0.284	S227
77	0.176	0.237	0.427	S66	153	0.116	0.296	0.282	S193
78	0.179	0.242	0.426	S104	153	0.116	0.295	0.282	S110
78	0.173	0.234	0.426	S11	154	0.117	0.308	0.276	S7
79	0.177	0.239	0.425	S13	155	0.109	0.302	0.266	S41
79	0.179	0.243	0.425	S22	156	0.103	0.301	0.256	S186
80	0.173	0.235	0.424	S205	156	0.110	0.320	0.256	S200
80	0.170	0.231	0.424	S33	157	0.104	0.312	0.250	S83
81	0.174	0.238	0.423	S44	158	0.104	0.324	0.243	S204
82	0.177	0.242	0.422	S20	159	0.099	0.317	0.238	S37
83	0.187	0.261	0.418	S114	160	0.106	0.343	0.236	S207
84	0.173	0.242	0.417	S72	161	0.064	0.347	0.155	S9

2.3 小麦资源抗病性调查及分子标记分析

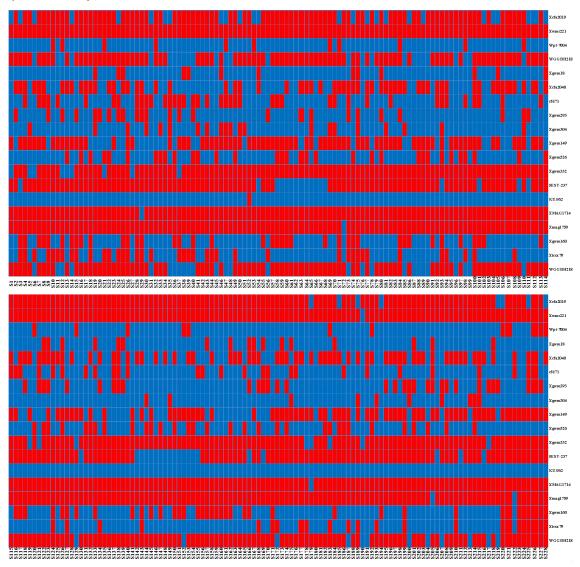
2.3.1 小麦资源抗病性调查

对 228 份小麦材料进行成株期条锈病、叶锈病和白粉病抗性调查(图 4),其中,181 份材料(79.39%) 抗条锈病(图 4A,表 8),有 17 份(7.46%)介于中抗和中感之间,表现感病的有 38 份(16.67%); 220 份材料(96.49%)抗叶锈病(图 4B,表 8),有 8 份材料(3.51%)介于中抗和中感之间; 83 份材料(36.40%) 抗白粉病(图 4C,表 8),有 45 份材料(19.74%)介于中抗和中感之间,有 80 份材料(35.09%)介于中感和高感之间,有 20 份材料(8.77%)表现为极感。

A: 条锈病 Stripe rust; B: 叶锈病 Leaf rust; C: 白粉病 Powdery mildew 图 4 小麦条锈病、叶锈病和白粉病抗性调查结果

Fig.4 The investigated results of strip rust, leaf rust and powdery mildew in wheat

表 8 抗病材料分布结果


Table 8 The distribution of materials resistant to diseases

病害类型 Disease types	抗病材料 Disease-resistant materials	材料数 Numbers	比例 Proportion
条锈病 Stripe rust	\$1~\$6, \$10~\$32, \$35, \$38, \$39, \$42~\$51, \$53~\$56, \$61~\$63, \$66, \$67, \$69~\$74, \$76~\$80, \$82, \$84~\$90, \$93~\$96, \$98~\$101, \$103~\$105, \$107~\$117, \$119, \$121~\$126, \$128~\$130, \$132~\$137, \$139, \$141~\$169, \$171~\$174, \$177, \$180, \$182, \$185, \$186, \$189~\$195, \$197, \$199~\$202, \$204, \$207~\$218, \$220~\$228	181	79.39%
叶锈病 Leaf rust	\$1~\$8, \$10~\$120, \$122~\$129, \$131~\$136, \$139~\$156, \$158~\$179, \$181~\$200, \$202~\$228	220	96.49%
白粉病 Powdery mildew	\$4, \$6, \$13, \$17, \$18, \$23, \$25, \$28, \$29, \$32, \$35~\$37, \$42, \$45, \$48, \$52, \$56, \$63, \$66, \$68, \$71, \$72, \$79, \$81, \$82, \$84, \$90, \$92, \$95, \$100, \$104, \$106, \$107, \$108, \$110, \$112, \$117, \$119, \$125, \$134, \$140, \$143, \$150, \$151, \$164, \$165, \$170~\$173,	83	36.40%

2.3.2 抗病基因/OTL 相关分子标记分析

18 个与小麦抗病基因/QTL 相关的分子标记在 228 份材料中分布比例不同(图 5), 其中, 抗秆锈病基 因 Sr22、Sr25 和 Sr28 相关的标记 Xfa2019、Xwmc221 和 Wpt-7004 分别在 194、227 和 23 份材料中检测到, 分别占总材料数的 85.09%、99.56%和 10.09%; 抗条锈病基因 Yr65 和 Yr67 相关标记 Xgwm18 和 Xcfa2040 分别在 30 和 127 份材料中被检测到,占 13.16%和 55.70%; 抗叶锈病基因 Lr67 相关标记 cfd71 在 68 份材料 中有扩增,占 29.82%;抗赤霉病基因 Offis.ifa-5A(2个)和 Offii.nau-4B 相关标记 Xgwm293、Xgwm304 和 Xgwm 分别在 57、31 和 153 份材料中有结果,分别占总 25.00%、13.60%和 67.11%; 抗纹枯病基因 Sesl 相 关标记 Xgwm526 在 65 材料中有扩增,占 28.51%; 抗白粉病基因 Pm37、Pm55、Pm56、Pm59(2个)、 Pm61 (2 个)和 Pm64 相关标记 Xgwm332、5EST-237、KU.962、XMAG1714、Xmag1759、Xgwm160、Xicsx79 和 WGGBH218 分别在 211、191、1、226、225、77、62 和 191 份材料中有扩增,分别占 92.54%、83.77%、 0.44%、99.12%、98.68%、33.77%、27.19%和83.77%。综上表明,标记Xfa2019、Xwmc221、Xgwm332、 5EST-237、XMAG1714、Xmag1759 和 WGGBH218 在材料中检测到的频率均超过 80%。18 个小麦抗病性相 关分子标记在不同阶段材料中的分布频率也不同,抗秆锈病基因 Sr22、Sr25 和 Sr28 相关的标记 Xfa2019、 Xwmc221 和 Wpt-7004 分别在阶段IV、(III、II、I) 和I分布最广,占各阶段材料的 89.44%、100%和 12.12%; 抗条锈病基因 Yr65 和 Yr67 相关标记 Xgwm18 和 Xcfa2040 分别在阶段II和I分布最广,占各阶段材料的 16.67% 和 60.61%; 抗叶锈病基因 Lr67 相关标记 cfd71 在阶段II分布最广,占比为 72.72%; 抗赤霉病基因 Qfhs.ifa-5A(2个)和 Ofhi.nau-4B 相关标记 Xgwm293、Xgwm304 和 Xgwm 分别在阶段Ⅰ、Ⅱ和Ⅲ中分布最广,占各阶

段材料的 36.36%、44.44%和 82.86%; 抗纹枯病基因 *Sesl* 相关标记 Xgwm526 在阶段II分布最广,占比为 33.33%; 抗白粉病基因 *Pm37、Pm55、Pm56、Pm59*(2 个)、*Pm61*(2 个)和 *Pm64* 相关标记 Xgwm332、5EST-237、KU.962、XMAG1714、Xmag1759、Xgwm160、Xicsx79 和 WGGBH218 分别在III、II、II、(II、III)、(I、II)、I、I和IV中分布最广,占各阶段材料 100.00%、100.00%、5.56%、100.00%、100.00%、42.42%、54.55%和 87.32%(表 9)。

红色和蓝色分别表示引物在材料中有和没有扩增结果

Red and Blue bars indicate positive and negative amplification results in materials

图 5 抗病性相关分子标记在 228 份国内小麦资源中的检测结果

Fig.5 The detected result of molecular markers related to disease resistance in 228 wheat resources

表 9 抗病性基因/QTL 相关分子标记在各阶段材料中的分布

Table 9 Distribution of molecular markers related to genes/QTL for disease resistance in materials from different stages

性状 Trait	基因/QTL	引物名称		比例 (%) Pr	oportion	
注机 Irait	Gene/QTL	Primer name	I	II	III	IV
	Sr22	Xfa2019	81.82	72.22	77.14	89.44
秆锈病 Stem rust	Sr25	Xwmc221	100.00	100.00	100.00	99.30
	Sr28	Wpt-7004	12.12	5.56	11.43	9.86
条锈病 Stripe rust	Yr65	Xgwm18	9.09	16.67	11.43	14.08

	Yr67	Xcfa2040	60.61	22.22	57.14	58.45
叶锈病 Leaf rust	<i>Lr67</i>	cfd71	36.36	72.22	22.86	24.65
	Qfhs.ifa-5A	Xgwm293	36.36	16.67	20.00	24.65
赤霉病 Fusarium head blight	Qfhs.ifa-5A	Xgwm304	15.15	44.44	17.14	8.45
	Qfhi.nau-4B	Xgwm149	54.55	72.22	82.86	65.49
纹枯病 Sharp eyespot	Sesl	Xgwm526	24.24	33.33	25.71	29.58
白粉病 Powdery mildew	Pm37	Xgwm332	75.76	94.44	100.00	94.37
	Pm55	5EST-237	96.97	100.00	65.71	83.10
	Pm56	KU.962	0	5.56	0	0
	Pm59	XMAG1714	96.97	100.00	100.00	99.30
	Pm59	Xmag1759	100.00	100.00	97.14	98.59
	Pm61	Xgwm160	42.42	22.22	40.00	31.69
	Pm61	Xicsx79	54.55	44.44	22.86	19.72
	Pm64	WGGBH218	84.85	50.00	85.71	87.32

3 讨论

为保证小麦产业发展和保障国家粮食安全,培育高产、优质且抗病的小麦新品种,是目前小麦育种的 主要目标。大量研究表明,株高和籽粒性状对提高小麦单产和品质具有较大贡献[5-7]。因此,阐明国内不同 育种阶段的小麦在宁夏春麦区的表现对宁夏小麦高产优质品种选育十分关键。本研究连续三年在宁夏春麦 区生态条件下测定了228份国内小麦资源的株高及籽粒性状,利用变异和相关分析等方法对这些小麦材料 的表现进行比较。结果表明,种植于宁夏的这些小麦资源,株高在阶段III显著下降,与此同时,穗粒数、 穗粒重和千粒重较阶段I已有较大提升,平均分别达到 47 粒、2.01 g 和 39.05 g,在此阶段,全世界'绿色革 命'兴起,矮杆基因广泛利用极大提高了小麦抗倒伏及单位面积产量[46]。然而一味追求矮秆必然导致生物 学产量降低,不利于提高品种产量潜力^[47]。本研究相关性分析发现,小麦株高与阶段IV籽粒性状均呈极显 著正相关,说明对于当前育种阶段,适当增加株高有利于小麦产量和品质提升。在穗部性状中,穗粒重变 异系数最大(21.59%),具有较大改良潜力,与许娜丽等[48]和倪永静等[49]研究结果一致;且穗粒重与穗粒数 和千粒重均呈极显著正相关,改良穗粒重对于提高产量具有重要意义。籽粒蛋白质性状变异系数表现为沉 降值(11.18%)>湿面筋含量(7.57%)>粗蛋白含量(7.43%),其中,粗蛋白含量15.13%目前已不低,提 升蛋白质质量尤为重要,而沉降值作为蛋白质质量指标,且变异系数较大,具有较大改良潜力,与王掌军 等^[50]研究结果一致。此外,高产一直作为小麦首要育种目标,随着改良和育种进程演变,穗粒数、穗粒重 和千粒重与产量相关因子逐渐增加,而籽粒性状变异逐渐减弱,小麦品种间表现出极大相似性,遗传基础 日趋狭窄、脆弱[21],使得小麦极易受气候变化和病虫害的影响,对小麦产量和质量造成了不同程度的损害[51]。 聚类分析结果表明,类群IV中主要包括地方品种,品种间特异性强,蛋白质性状表现优异,因此,今后应 重视对地方品种中优异品质及抗病基因的发掘和利用。此外,类群Ⅰ在粗蛋白含量、湿面筋含量和沉降值 上表现突出,类群Ⅱ在穗粒数、穗粒重和千粒重上优势明显,育种应用时这两个类群可作丰产、提质材料加 以利用;类群VI的平均株高最矮,可作为矮杆育种的中间亲本;其他类群在株高与籽粒性状中表现不突出, 今后可对材料其他性状进行分析,进一步筛选有利性状。科学的性状评价方法可为精准育种提供方法支撑。 DTOPSIS 法已被广泛应用于小麦综合评价中[52,53],采用熵权法对评价系统中的各个指标赋予权重,可解决 DTOPSIS 法中权重参数无法客观分配的问题,规避主观因素对结果造成的影响[16]。目前基于熵值赋权的 DTOPSIS 法,在水稻[54]、玉米[19]等作物上应用广泛,在小麦上应用较少。本研究基于熵权法将株高用中性 指标,其它性状用正向指标度量,使各性状量化指标更合理,符合目前小麦育种目标,结合 DTOPSIS 法筛 选出 11 份材料依次为: 红兴隆 3 号、扬糯麦、新疆小麦、上林小麦、宁春 45 号、会宁 19 号、宁春 32 号、 M6445、甘春 25 号、永良 15 号和小冰 33 号。这些综合性状优异的材料在株高和籽粒性状上均有优异表现, 是高产、优质新品种选育的物质基础,今后在宁夏小麦品种改良中应充分利用其优异基因。

病害对小麦生产造成严重危害,尽管化学防治已取得一定效果,但应用抗病品种是防治病害最经济、

有效、安全的途径[22]。国内近几年出现了条锈病和白粉病的新小种,不少品种开始丧失抗性[55],通过主效抗病基因聚合,可显著提高小麦的综合抗病能力[24]。通过分子标记辅助选择可有目的地进行基因累加,而利用抗病性相关分子标记小麦品种携带的抗病基因/QTL 位点进行辅助筛选是重要前提[20]。本研究利用 18个与小麦 6 种病害抗性基因 QTL/位点相关分子标记,对 228 份国内小麦资源进行鉴定,发现抗秆锈病基因 Sr22、Sr25 和 Sr28 相关的标记 Xfa2019、Xwmc221 和 Wpt-7004 分别在 194、227 和 23 份材料中有分布;抗条锈病基因 Yr65 和 Yr67 相关标记 Xgwm18 和 Xcfa2040 分别在 30 和 127 份材料中有分布;抗叶锈病基因 Lr67 相关标记 cfd71 在 68 份材料中有分布;抗赤霉病基因 Qfhs.ifa-5A(2 个)和 Qfhi.nau-4B 相关标记 Xgwm293、Xgwm304 和 Xgwm 分别在 57、31 和 153 份材料中有分布;抗纹枯病基因 Sesl 相关标记 Xgwm526 在 65 材料中有分布;抗白粉病基因 Pm37、Pm55、Pm56、Pm59(2 个)、Pm61(2 个)和 Pm64 相关标记 Xgwm332、5EST-237、KU.962、XMAG1714、Xmag1759、Xgwm160、Xicsx79 和 WGGBH218 分别在 211、191、1、226、225、77、62 和 191 份材料中有分布。此外,根据抗病基因相关的分子标记的分布以及田间抗病性调查结果表明:红兴隆 3 号抗条锈、叶锈和白粉病,同时存在抗秆锈和赤霉病相关基因;M6445 和永良 15 号抗条锈和叶锈病,同时存在抗秆锈、赤霉和白粉病相关基因;新疆小麦、宁春 45 号、会宁 19 号、宁春 32 号、甘春 25 号和小冰 33 号同时抗条锈和叶锈病,同时存在抗秆锈、赤霉和白粉病相关基因。

综上所述,本研究基于熵值赋权 DTOPSIS 法及分子标记筛选出的 11 份综合性状优异的小麦材料,可作为宁夏小麦育种亲本。同时,不同育种阶段的小麦资源在宁夏春麦区表现为株高和蛋白质性状有随年代增加而降低、而粒数和粒重上升的趋势。今后,在保证小麦抗倒伏基础上适当增加株高,以提高生物产量进而提高经济产量,增加穗粒重达到增产的效果,改良蛋白质质量性状,进而改善加工品质,同时,要注重抗病资源在育种的应用。

参考文献

- [1] Tian Z W, Jing Q, Dai T B, Jiang D, Cao W X. Effects of genetic improvements on grain yield and agronomic traits of winter wheat in the Yangtze River Basin of China. Field Crops Research, 2011, 124(3):417-425
- [2] 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析. 作物学报, 2020, 46(12):1997-2007 Ma Y M, Feng Z Y, Wang W, Zhang S J, Guo Y, Ni Z F, Liu J. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits. Acta Agronomica Sinica, 2020, 46(12):1997-2007
- [3] 李振声. 我国小麦育种的发展历程. 中国农村科技, 2010(2):26-28
 Li Z S. The development of wheat breeding in China. China Rural Science & Technology, 2010(2):26-28
- [4] 何中虎, 庄巧生, 程顺和,于振文, 赵振东, 刘旭. 中国小麦产业发展与科技进步. 农学学报, 2018,8(01):99-106

 He Z H, Zhuang Q S, Cheng S H, Yu Z W, Zhao Z D, Liu X. Wheat production and technology improvement in China. Journal of Agriculture, 2018, 8(01):99-106
- [5] 王掌军, 刘妍, 刘凤楼, 李清峰, 张晓岗, 刘生祥, 贾彪. 宁春 4号与河东乌麦杂交 F_2 代穗部性状分析及其重要 QTL 发掘. 南方农业学报, 2019, 50(04):685-694
 - Wang Z J, Liu Y, Liu F L, Li Q F, Zhang X G, Liu S X, Jia B. Analysis on panicle traits and important QTL discovery of F₂ hybrids from Ningchun No.4 and Hedong black wheat. Journal of Southern Agriculture, 2019, 50(04):685-694
- [6] 王志伟, 黄锦, 杨金华, 程加省, 胡银星, 程耿,于亚雄. 云南省小麦主栽品种产量改良遗传进展研究. 安徽农业科学, 2012, 40(32):15617-15621 Wang Z W, Huang J, Yang J H, Cheng J S, Hu Y X, Cheng G, Yu Y X. Genetic improvement of grain yield in leading wheat cultivars of Yunnan Pr ovince. Journal of Anhui Agricultural Sciences, 2012, 40(32):15617-15621
- [7] 伍维模, 李世清. 小麦品种演变过程中性状遗传改良规律综述. 塔里木大学学报, 2006, 18(01):43-47
 Wu W M, Li S Q. A summary of genetic improvement of various characters during wheat cultivars evolvement. Journal of Tarim University, 2006, 18(01):43-47
- [8] 李红霞, 方亮, 魏亦勤, 裘敏, 张双喜, 刘旺清, 王平. 宁夏五十年来春小麦主栽品种农艺性状和品质性状演变. 种子, 2007, 26(03):63-66 Li H X, Fang L, Wei Y Q, Qiu M, Zhang S X, Liu W Q, Wang P. Development of agronomic traits and quality traits in main cultivars of spring whe at from Ningxia in the past 50 years. Seed, 2007, 26(03):63-66
- [9] 李润芳, 张晓冬, 王栋, 王存娥, 刘世华, 路凌云, 丁汉凤, 李娜娜. 山东省近 60 年来主推小麦品种主要农艺性状演变规律. 中国农学通报, 2019, 35(07):20-27
 - Li R F, Zhang X D, Wang D, Wang C E, Liu S H, Lu L Y, Ding H F, Li N N. Evolution characteristics of major agronomic characters of main planting wheat varieties in Shandong Province in 60 years. Chinese Agricultural Science Bulletin, 2019, 35(07):20-27
- [10] 王成社, 刘录祥, 谢彦周, 许喜堂, 魏红升, 张小燕. 陕西关中麦区小麦品种产量及其构成的演变. 麦类作物学报, 2018, 38(09):1080-1083 Wang C S, Liu L X, Xie Y Z, Xu X T, Wei H S, Zhang X Y. evolution of yield and its components for wheat varieties in Guanzhong of Shaanxi. Journal of triticeae crops, 2018, 38(09):1080-1083
- [11] 李爱国, 宋晓霞, 张文斐, 王改革. 2001-2020 年河南省审定小麦品种育种特点及表型性状演变分析. 麦类作物学报,2021, 41(08):947-959 Li A G, Song X X, Zhang W W, Wang G G. Breeding characteristics and phenotypic traits evolution of wheat varieties approved in Henan Province during 2001-2020. Journal of Triticeae Crops, 2021, 41(08):947-959
- [12] 宋健民,戴双,李豪圣,程敦公,刘爱峰,曹新有,刘建军,赵振东.山东省近年来审定小麦品种农艺和品质性状演变分析.中国农业科学,2013,46(06):1114-1126
 - Song J M, Dai S, Li H S, Chen D G, Liu A F, Cao X Y, Liu J J, Zhao Z D. Evolution of agronomic and quality traits of wheat cultivars released in S handong Province recently. Scientia Agricultura Sinica, 2013, 46(06):1114-1126
- [13] 韩志勇, 廖新福, 杨斌. DTOPSIS 方法在小麦品种(系)综合评价中的应用. 新疆农业科技, 2006(05): 10-19

 Han Z Y, Liao X F, Yang B. Application of DTOPSIS method in comprehensive evaluation of wheat varieties (lines). Xinjiang Agricultural Science and Technology, 2006(05):10-19
- [14] 余慧霞, 刘彩霞, 李清峰, 许娜丽, 王彦青, 姚明明, 陈佳静, 孙刚, 王掌军. 普通小麦及其亲缘种农艺与籽粒品质性状及金属元素含量相关分子标记分析. 南方农业学报, 2022, 53(07):1821-1831
 - Yu H X, Liu C X, Li Q F, Xu N L, Wang Y Q, Yao M M, Chen J J, Sun G, Wang Z J. Analysis of agronomic and grain quality traits and molecular

- markers related to metal element content in common wheat and its related species. Journal of Southern Agriculture, 2022, 53(07):1821-1831
- [15] 薛伟, 张玮, 毕经伟, 田军, 赵禹凯, 谭丽萍. 基于灰色关联度分析法综合评价小麦区域试验品种. 安徽农学通报, 2022, 28(10):88-90 Xue W, Zhang W, Bi J W, Tian J, Zhao Y K, Tan L P. Applying the grey correlation anlysis method to the comprehensive evaluation of wheat variet ies. Anhui Agricultural Science Bulletin, 2022, 28(10):88-90
- [16] 罗思良, 费永红, 农媛, 韦德斌, 韦静, 周银慧, 钟维. 基于熵值赋权 DTOPSIS 法对 9 个温棚西甜瓜品种综合评价. 南方农业, 2022, 16(17):16-19 Luo S L, Fei Y H, Nong Y, Wei D B, Wei J, Zhou Y H, Zhong W. Comprehensive evaluation of nine greenhouse watermelon varieties based on entropy weight DTOPSIS method. South China Agriculture, 2022, 16(17):16-19
- [17] 郭强, 马文清, 秦昌鲜, 施泽升, 彭崇, 闭德金, 何洪良, 梁永检, 唐利球. 基于 DTOPSIS 法的广西崇左市引进甘蔗新品种(系)综合评价及优良品(系)筛选. 南方农业学报, 2021, 52(02):341-347
 - Guo Q, Ma W Q, Qin C X, Shi Z S, Peng C, Bi D J, He H L, Liang Y J, Tang L Q. Comprehensive evaluation of new sugarcane varieties (lines) by DTOPSIS method and screening of excellent varieties in Chongzuo, Guangxi. Journal of Southern Agriculture, 2021, 52(02):341-347
- [18] 李文砚, 黄丽君, 卢美瑛, 蒋娟娟, 韦优, 罗培四, 赵静, 孔方南, 卓福昌, 杨志强, 周婧. DTOPSIS 法在苹婆不同品系综合评价中的应用. 南方农业学报, 2019, 50(07):1527-1533.
 - Li W Y, Huang L J, Lu M Y, Jiang J J, Wei Y, Luo P S, Zhao J, Kong F N, Zhuo F C, Yang Z Q, Zhou J. Comprehensive evaluation of Sterculia nob ilis Smith lines by DTOPSIS method. Journal of Southern Agriculture, 2019, 50(07):1527-1533
- [19] 张春艳, 吴荣华, 庄克章, 徐杰, 李新新, 李静, 王恒, 齐孝峰. 基于熵值赋权的 DTOPSIS 法对不同玉米品种在鲁南地区的综合评价研究. 中国农学通报, 2021, 37(23):8-14
 - Zhang C Y, Wu R H, Zhuang K Z, Xu J, Li X X, Li J, Wang H, Qi X F. Comprehensive evaluation of maize varieties in Southern Shandong Provinc e by DTOPSIS method based on entropy weight. Chinese Agricultural Science Bulletin, 2021, 37(23):8-14
- [20] 黄杰, 王君, 宋丹阳, 葛昌斌. 基于熵权法的 DTOPSIS 分析法与灰色关联度分析法对'漯麦 906'的综合评价. 天津农业科学, 2021, 27(11):20-25
 - Huang J, Wang J, Song D Y, Ge C B. Comprehensive evaluation of 'Luomai 906' based on entropy DTOPSIS method and gray relational degree ana lysis. Tianjin Agricultural Sciences, 2021, 27(11):20-25
- [21] 王掌军,刘妍,王姣,付青青,刘凤楼,张双喜,张文杰,张晓岗,刘生祥.小麦种质资源农艺性状遗传分析及白粉病抗性鉴定.西南农业学报,2018,31(07):1338-1348
 - Wang Z J, Liu Y, Wang J, Fu Q Q, Liu F L, Zhang S X, Zhang W J, Zhang X G, Liu S X. Genetic analysis on agronomic traits and identification of powdery mildew resistance of wheat germplasm resources. Southwest China Journal of Agricultural Sciences, 2018, 31(07):1338-1348
- [22] 胡朝月, 王凤涛, 郎晓威, 冯晶, 李俊凯, 蔺瑞明, 姚小波. 小麦抗条锈病基因对中国条锈菌主要流行小种的抗性分析. 中国农业科学, 2022, 55(03):491-502
 - Hu Z Y, Wang F T, Lang X W, Feng J, Li J K, Lin R M, Yao X B. Resistance analyses on wheat stripe rust resistance genes to the predominant races of *Puccinia striiformis* f. sp. *tritici* in China. Scientia Agricultura Sinica, 2022, 55(03):491-502.
- [23] 尉法刚, 王光浩, 王长有, 张宏, 刘新伦, 田增荣, 朱建峰, 陈春环, 吉万全, 王亚娟. 400 份小麦品种(系)条锈病成株期抗性鉴定与评价. 植物遗传资源学报, 2020, 21(04):846-854
 - Yu F G, Wang G H, Wang C Y, Zhang H, Liu X L, Tian Z R, Zhu J F, Chen C H, Ji W Q, Wang Y J. Evaluation and identification of adult resistance to stripe rust from 400 wheat varieties (lines). Journal of Plant Genetic Resources, 2020, 21(04):846-854
- [24] 王鑫,宋鹏博,王笑笑,杨孟于,周锋,吕栋云,孙道杰.305 份国内外小麦种质条锈病与白粉病抗性鉴定与评价.麦类作物学报,2021,41(06):689-698
 - Wang X, Song P B, Wang X X, Yang M Y, Zhou F, Lv D Y, Sun D J. Identification and evaluation of resistance to stripe rust and powdery mildew of 305 domestic and foreign wheat germplasms. Journal of Triticeae Crops, 2021, 41(06):689-698
- [25] 王心宇, 陈佩度, 张守忠. 小麦白粉病抗性基因的聚合及其分子标记辅助选择. 遗传学报, 2001, 28(07):640-646
 - Wang X Y, Chen P D, Zhang S Z. Pyramiding and marker-assisted selection for powdery mildew resistance genes in common wheat. Acta Genetica Sinica, 2001, 28(07):640-646
- [26] 张林, 张梦雅, 高颖, 许换平, 刘成, 刘建军, 闫红飞, 刘大群. 山东省 12 个主栽小麦品种(系) 抗叶锈性分析. 植物遗传资源学报, 2017, 18(04):676-684

- Zhang L, Zhong M Y, Gao Y, Xu H P, Liu C, Liu J J, Y H F, Liu D Q. Analysis of leaf rust resistance in 12 main wheat cultivars (lines) in Shandong. Journal of Plant Genetic Resources, 2017, 18(04):676-684
- [27] 张华, 任勇, 何员江, 郑首航, 吴舸, 邹凤亮, 雷加容, 杜小英, 陶军, 欧俊梅. 153 份四川小麦主推品种和后备品系抗病基因的分子检测. 麦类作物学报, 2022, 42(01):26-35
 - Zhang H, Ren Y, He Y J, Zheng S H, Wu K, Zou F L, Lei J R, Du X Y, Tao J, Ou J M. Molecular detection of disease resistance genes in 153 sichua n wheat varieties and lines. Journal of Triticeae Crops, 2022, 42(01):26-35
- [28] 陈天青, 吴文强, 何庆才, 王伟, 隋建枢, 罗永露, 李红艳, 程斌, 王艳丽, 张立异.贵州小麦地方品种赤霉病抗病基因的分子检测. 分子植物育种, http://kns.cnki.net/kcms/detail/46.1068.S.20220620.1759.008.html
 - Chen T Q, Wu W Q, He Q C, Wang W, Sui J S, Luo Y L, Li H Y, Cheng B, Wang Y L, Zhang L Y. Molecular detection of fusarium head blight resi stance gene (s) of guizhou wheat landraces. Molecular Plant Breeding, http://kns.cnki.net/kcms/detail/46.1068.S.20220620.1759.008.html
- [29] 王掌军, 刘妍, 张双喜, 刘凤楼, 李清峰, 张晓岗, 刘生祥, 贾标. 宁春 4号与河东乌麦杂交 F_2 代抗病性及分子标记鉴定. 浙江农业学报,2019, 31(5):677-687
 - Wang Z J, Liu Y, Zhang S X, Liu F L, Li Q F, Zhang X G, Liu S X, Jia B. Identification on disease resistance and molecular markers of F₂ hybrids fr om Ningchun No.4 and Hedong black wheat. Acta Agriculturae Zhejiangensis, 2019, 31(5):677-687
- [30] 彭振英, 崔海燕, 李娜娜, 张斌, 丁汉凤. 小麦品种抗病相关分子标记检测研究. 山东农业科学, 2017, 49(02):1-9
 Peng Z Y, Cui H Y, Li N N, Zhang B, Ding H F. Disease resistance related molecular marker detection in *Triticum astivum* L, Shandong Agricultura 1 Sciences, 2017,49(02):1-9
- [31] 李立会, 李秀全, 杨欣明. 小麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006 Li L H, Li X Q, Yang X M. Wheat germplasm resources description specification and data standard. Beijing: China Agriculture Press, 2006.
- [32] 李复宁. 小麦条锈病严重度分级标准的研究简报. 植物保护, 1991, 17(2):30-30 Li F N. Study on severity grading standard of wheat stripe rust.Plant Protection, 1991, 17 (2):30-30
- [33] 盛宝钦, 段霞瑜. 对记载小麦成株白粉病 "0—9 级法" 的改进. 北京农业科学, 1991, 9(1):38-39

 Sheng B Q, Duan X Y. Improvement of '0—9 grade method 'for recording wheat adult powdery mildew. Beijing Agricultural Sciences, 1991, 9 (1)

 ·38-39
- [34] Zhang L L, Wang B, Pan L, Pen J H. Recycling isolation of plant DNA, a novel method. Journal of Genetics and Genomics, 2013, 40(1):45-54
- [35] 王掌军, 刘妍, 李阳, 杨乔乔, 田蕊, 亢铃, 张晓岗, 刘萍, 刘生祥. 宁春 4号与河东乌麦杂交 F₂品质性状及其分子标记分析. 河南农业科学, 2019, 48(02):17-24
 - Wang Z J, Liu Y, Li Y, Yang Q Q, Tian R, Kang L, Zhang X G, Liu P, Liu S X. Analysis of quality traits and their molecular markers of F₂ hybrids f rom Ningchun No.4 and Hedong Black Wheat. Journal of Henan Agricultural Sciences, 2019, 48(02):17-24
- [36] 吴限鑫, 李天亚, 陈思, 王冠钦, 曹远银, 马世良, 李明菊. 139 份小麦品种(系)抗秆锈性测定及其 Ug99 抗病基因分子检测. 中国农业科学, 2014, 47(23):4618-4626
 - Wu X X, Li T Y, Chen S, Wang G Q, Cao Y Y, Ma S L, Li M J. Stem rust resistance evaluation and Ug99-Resistance Gene detection of 139 wheat c ultivars. Scientia Agricultura Sinica, 2014, 47(23):4618-4626
- [37] 习玲, 王昱琦, 杨修, 朱微, 陈国跃, 王益, 覃鹏, 周永红, 康厚扬. 243 份云南普通小麦地方品种抗条锈病鉴定及分子标记检测. 中国农业科学, 2021, 54(04):684-695
 - Xi L, Wang Y Q, Yang X, Zhu W, Chen G Y, Wang Y, Qin P, Zhou Y H, Kang H Y. Evaluation of resistance to stripe rust and molecular detection of resistance gene (s) in 243 common wheat landraces from the Yunnan Province. Scientia Agricultura Sinica, 2021, 54(04):684-695
- [38] Hiebert C W, Thomas J B, McCallum B D, Gavin H D, DePauw R M, Hayden M J, Rohit M, Wendelin S, Wolfgang S. An introgression on whea t chromosome 4DL in RL6077 (Thatcher* 6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (*Lr67*). Theoretical and Applied Ge netics, 2010, 121(6):1083-1091
- [39] 李继发, 邓志英, 孙福来, 关西贞, 王诞训, 田纪春. 小麦新品种"山农 20"抗病基因的分子检测. 作物学报, 2014, 40(04):611-621. Li J F, Deng Z Y, Sun F L, Guan X Z, Wang D X, Tian J C. Resistance genes of wheat variety Shannong 20 identified by diagnostic molecular mark ers. Acta Agronomica Sinica, 2014, 40(04):611-621
- [40] Emara H M, Omar A F, El-Shamy M M, Mohamed M E. Identification of Pm24, Pm35 and Pm37 in thirteen Egyptian bread wheat cultivars using

- SSR markers. Ciência e Agrotecnologia, 2016, 40:279-287
- [41] Zhang R Q, Sun B X, Chen J, Cao A Z, Xing L P, Feng Y G, Lan C X, Chen P D. *Pm55*, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from *Dasypyrum villosum* into common wheat. Theoretical and Applied Genetics, 2016, 129(10):1975-1984
- [42] Hao M, Liu M, Luo J T, Fan C L, Yi Y J, Zhang L Q, Yuan Z W, Ning S Z, Zheng Y L, Liu D C. Introgression of powdery mildew resistance gene *Pm56* on rye chromosome arm 6RS into wheat. Frontiers in Plant Science, 2018, 9(9)
- [43] 胡经煌. 小麦地方品种须须三月黄抗白粉病基因 *Pm61* 的精细定位. 中国农业科学院, 2019
 Hu J H. Fine mapping of the powdery mildew resistance gene *Pm61* in wheat landrace Xuxusanyuehuang. Chinese Master's Theses Full-text Datab ase, 2019
- [44] Sun H G, Hu J H, Song W, Qiu D, Cui L, Wu P P, Zhang H J, Liu H, Yang w L, Qu Y F, Li Y H, Li T, Cheng W, Zhou Y, Liu Z Y, Li J T, Li H J. P m61: a recessive gene for resistance to powdery mildew in wheat landrace Xuxusanyuehuang identified by comparative genomics analysis. Theoreti cal and Applied Genetics, 2018, 131(10):2085-2097
- [45] Zhang D Y, Zhu K Y, Dong L L, Ling Y,Li G Q, Fanf T L. Wheat powdery mildew resistance gene *Pm64* derived from wild emmer (*Triticum turgid um var. dicoccoides*) is tightly linked in repulsion with stripe rust resistance gene *Yr5*. The Crop Journal, 2019, 7(6):761-770
- [46] Gao F M, Ma D Y, Yin G H, Rasheed A, Dong Y, Xiao Y G, Xia X C, Wu X X, He Z H. Genetic progress in grain yield and physiological traits in Chinese wheat cultivars of southern yellow and Huai Valley since 1950. Crop Science, 2017, 57(2):760-773
- [47] Shearman V J, Sylvester-Bradley R, Scott R K, Foulkes M J. Physiological processes associated with wheat yield progress in the UK. Crop Scienc e, 2005, 45(1):175-185
- [48] 许娜丽, 王新华, 马冬花, 杨杰, 李清峰, 刘凤楼, 刘彩霞, 刘根红, 张晓岗, 王掌军. 251 份小麦种质资源的主要农艺与品质性状遗传多样性分析. 南方农业学报, 2021, 52(09):2404-2416
 - Xu N L, Wang X H, Ma D H, Yang J, Li Q F, Liu C X, Liu G H, Zhang X G, Wang Z J. Genetic diversity analysis of main agronomic and quality tr aits of 251 wheat germplasm resources. Journal of Southern Agriculture, 2021, 52(09):2404-2416
- [49] 倪永静, 姜晓君, 卢祖权, 朱培培, 胡新, 韩同进. 30 份国内外小麦种质资源主要农艺性状的分析与评价. 中国农学通报, 2020, 36(03):16-22 Ni Y J, Jiang X J, Lu Z Q, Zhu P P, Hu X, Han T J. 30 worldwide wheat germplasm resources: analysis and evaluation of main agronomic traits. C hinese Agricultural Science Bulletin, 2020, 36(03):16-22
- [50] 王掌军,刘妍,李阳,杨乔乔,田蕊, 亢玲,张晓岗,刘萍,刘生祥.宁春 4号与河东乌麦杂交 F2品质性状及其分子标记分析.河南农业科学,2019,48(02):17-24
 - Wang Z J, Liu Y, Liu Y, Yang Q Q, Tian X, Kang L, Zhang X G, Liu P, Liu S X. Analysis of quality traits and their molecular markers of F₂ hybrids f rom Ningchun No.4 and Hedong Black Wheat. Journal of Henan Agricultural Sciences, 2019, 48(02):17-24
- [51] 李灿, 杨耸月, 王家林, 刘全兰. 分子标记在植物抗病育种中的应用. 安徽农学通报, 2015, 21(17):21-22 Li C, Yang S Y, Wang J L, Liu Q L. Marker-associated selection for disease resistance in plant breeding. Anhui Agricultural Science Bulletin, 2015, 21(17):21-22
- [52] 吴志会, 白玉龙, 董玉武, 王淑芳. DTOPSIS 法综合评价冀中北冬小麦新品种的初步研究. 麦类作物学报, 2005(06):116-119
 Wu Z H, Bai Y L, Dong Y W, Wang S F. A preliminary evaluation of new winter wheat varieties of Middle-North Hebei with DTOPSIS method. A cta Tritical Crops, 2005(06):116-119
- [53] 曹彦龙, 孙占波, 唐健, 李前荣, 裘志新, 汤忠, 伍昌. 运用 DTOPSIS 法评价春小麦新品系综合性状的统计研究. 种子科技, 2010, 28(07):24-25 Cao Y L, Sun Z B, Tang J, Li Q R, Qiu Z X, Tang Z, Wu C. Statistical study on evaluation of comprehensive characters of new spring wheat lines b y DTOPSIS method. Seed Technology, 2010, 28(07):24-25
- [54] 刘丽娟, 刘延刚, 金桂秀. 用基于熵值赋权的 DTOPSIS 法综合评价水稻品种. 山东农业科学, 2022, 54(07):39-45

 Liu L J, Liu Y G, Jin G X. Comprehensive evaluation of rice varieties by DTOPSIS method based on entropy weight. Shandong Agricultural Scien ces, 2022, 54(07):39-45
- [55] 何中虎, 兰彩霞, 陈新民, 邹裕春, 庄巧生, 夏先春. 小麦条锈病和白粉病成株抗性研究进展与展望. 中国农业科学, 2011, 44(11):2193-2215 He Z H, Lan C X, Chen X M, Zou Y C, Zhuang Q S, Xia X C. Progress and perspective in research of adult-plant resistance to stripe rust and powd ery mildew in wheat. Scientia Agricultura Sinica, 2011, 44(11):2193-2215