Citation:[Copy]
[Copy]
【Print page】 【Online reading】【PDF Full text】 查看/发表评论下载PDF阅读器关闭

Back Issue    Advanced search

This Paper:Browse 1270   Download 0  
花生种皮色素合成相关通路的转录组-代谢组学联合分析
李佳伟1, 马钰聪1, 杨鑫雷1, 王 梅1, 崔顺立1, 侯名语1, 刘立峰1, 胡梦蝶1, 蒋晓霞2, 穆国俊1
0
(1.华北作物改良与调控国家重点实验室/河北省作物种质资源实验室/河北农业大学;2.河北易园生态农业科技有限公司)
摘要:
花青素是具有重要生理活性的植物次生代谢产物,而关于花青素合成机制的研究已成为重要的研究热点之一。本研究以花青素类型和含量存在显著差异的紫色种皮“紫珍珠”、红色种皮“红珍珠”、粉色种皮“G110”和白色种皮“白珍珠”为研究材料,取开花下针30天和45天样品进行转录组、代谢组分析以及双组学联合分析。RNA-Seq分析共鉴定出32805个差异表达基因,KEGG富集通量分析表明不同组别具有差异。GO分析结果表明,在氧化还原过程、花色苷化合物生物合成过程和类黄酮生物合成过程中,分别富集到与种皮颜色相关的差异表达基因分别为34个、21个和19个。液相色谱串联质谱(LC-MS/MS)法进行代谢组分析结果表明,差异代谢物包括原花青素、矮牵牛素、芍药素、锦葵素、飞燕草素和矢车菊素以及它们的衍生物;原花青素A1、A2、B2、B3,飞燕草素和矢车菊素在各个比较组显著上调,差异倍数为5.82~19.52。差异代谢物KEGG分析共富集到2条代谢通路,分别是花青素生物合成途径和类黄酮生物合成途径。转录组-代谢组的联合分析结果表明,类黄酮生物合成是种皮颜色形成的关键合成通路,飞燕草素和矢车菊素为主要差异代谢物。筛选出20个关键基因,qRT-PCR分析结果表明,在30 DAF时期基因PAL、4CL、IF7MAT、CHI、F3H、DFR、LAR和LDOX显著上调表达,C-CoA和FLS显著下调表达;在45 DAF时期PAL、HCT-1和DFR显著上调,CHS、C-CoA和FLS显著下调。本研究结果将为深入研究花生种皮花青素合成的分子机理提供信息基础,同时对选育富含花青素的花生品种具有一定参考价值。
关键词:  花生  花青素  黄酮类生物合成  转录组-代谢组学联合分析  qRT-PCR
DOI:10.13430/j.cnki.jpgr.20210524001
投稿时间:2021-05-24修订日期:2021-07-04
基金项目:河北省高等学校科学技术研究项目(ZD2019051);河北省重点研发计划项目现代种业科技专项(19226363D);2021年度河北省保定市农业科技园区建设项目(2111N004)
Transcriptomics-Metabolomics Combined Analysis Highlight the Mechanism of Testa Pigment Formation in Peanut (Arachis hypogaea L.)
LI Jia-wei1, MA Yu-cong1, YANG Xin-lei1, WANG Mei1, CUI Shun-li1, HOU Ming-yu1, LIU Li-feng1, HU Meng-die1, JIANG Xiao-xia2, MU Guo-jun1
(1.State Key Laboratory of North China Crop Improvement and Regulation, Laboratory of Hebei Provincial Crop Germplasm Resources, Hebei Agricultural University;2.Hebei Yiyuan Ecological Agriculture Technology Co, Ltd)
Abstract:
Anthocyanins are plant secondary metabolites with important physiological activities, and deciphering the mechanism of pigment formation has become one of the most important research hotspots. In this study, the peanut varieties including Zizhenzhu (purple testa), Hongzhenzhu (red testa), G110 (pink testa) and Baizhenzhu (white testa) were analyzed using RNA-Seq and liquid chromatography tandem mass spectrometry (LC-MS/MS), by using testa samples harvested at 30 and 45 days after flowering (30 DAF and 45 DAF), respectively. RNA-Seq revealed 32805 differentially expressed genes (DEGs), which were enriched in different number of pathways using KEGG analysis. GO analysis revealed 34, 21 and 19 DEGs which were enriched to the pathways of oxidation-reduction process, anthocyanin-containing compound biosynthetic process and Flavonoid biosynthetic process, respectively. LC-MS/MS analysis showed types of metabolites including proanthocyanidins, petunidin, paeoniflorin, malvadin, delphinium, cyanidin and their derivatives. Procyanidins A1, A2, B2, B3, delphinium and cyanidin were significantly up-regulated in each comparison group, with a variation of 5.82-19.52 on fold. Two pathways consisting of anthocyanin biosynthesis and flavonoid biosynthesis were enriched. The transcriptomic-metabolomics combined analysis showed that flavonoid biosynthesis is the key synthesis pathway for testa color formation, and delphinidin and cyanidin are the main differential metabolites. Out of 20 important genes, each), qRT-PCR analysis showed that PAL, 4CL, IF7MAT, CHI, F3H, DFR, LAR and LDOX were significantly up-regulated; C-CoA and FLS were observably down-regulated at 30 DAF; PAL, HCT-1 and DFR were significantly up-regulated; CHS, C-CoA and FLS were observably down-regulated at 45 DAF. Collectively, these results laid a theoretical foundation for future deciphering the molecular mechanism of peanut testa anthocyanin synthesis, valuable in breeding for peanut varieties with enriched anthocyanin.
Key words:  peanut  anthocyanin  flavonoid biosynthesis  transcriptomics-metabolomics combined analysis  qRT-PCR