黄秋葵番茄红素 β-环化酶 LCYB 基因的克隆与分析

李永平,陈敏氡,朱海生,温庆放,刘建汀

(福建省农业科学院作物研究所/福建省农业科学院蔬菜研究中心/福建省蔬菜工程技术研究中心,福州350013)

摘要:应用 RT-PCR 和 RACE 技术克隆得到 cDNA 全长 1797 bp 的黄秋葵(Hibiscus esculentus L.)番茄红素 β -环化酶基因 LCYB,开放阅读框(ORF)包含 1509 个碱基;预测编码 503 个氨基酸,理论分子量(Mw)为 56. 288 kD,等电点(pI)为 4. 577;编码的蛋白与陆地棉(Gossypium hirsutum L.)、黄麻(Corchorus capsularis L.)和可可(Theobroma cacao L.)同源蛋白的相似性均在 88%以上,显示其高度的保守性,将基因命名为 HeLCYB,GenBank 登录号为:KX257998。Motif Scan 分析显示,蛋白氨基酸序列 88~481 位为 HeLCYB 保守结构域,并在 88~113 位含有 1 个 FAD 结合域。通过荧光定量 PCR 分析表明,HeLCYB 基因在黄秋葵根、茎、叶、花和果荚中均有表达;叶片生长中以成熟叶中表达最高,果实发育中以花后 7d 高表达。建立与优化了黄秋葵类胡萝卜素超高效液相检测体系,结果显示黄秋葵中主要含有 β -胡萝卜素和叶黄素。 β -胡萝卜素在成熟叶中含量最高,果实以花后 7d 含量最高,与 HeLCYB 基因的表达呈正相关。本研究揭示了 HeLCYB 基因表达和类胡萝卜素积累的特性,为开展黄秋葵类胡萝卜素分子调控机制研究奠定了基础。

关键词: 黄秋葵; 番茄红素 β-环化酶 LCYB 基因; 类胡萝卜素; UPLC

Cloning and Expression Analysis of a Lycopene Beta-cyclase Gene in *Hibiscus esculentus* L.

LI Yong-ping, CHEN Min-dong, ZHU Hai-sheng, WEN Qing-fang, LIU Jian-ting (Crops Research Institute, Vegetable Research Center, Fujian Academy of Agricultural Sciences, Fujian Engineering Research Center for Vegetables, Fuzhou 350013)

Abstract: In this study, a *LCYB* gene was cloned from *Hibiscus esculentus* L. by RT-PCR and RACE technique. The full-length cDNA sequence of *LCYB* was 1797 bp, which contained a 1509 bp open reading frame (ORF) that encoded 503 amino acids, with a predicted molecular weight (mol. wt) of 56. 288 kD and a hypothetical isoelectric point (pI) of 4. 577. It shared over 88% identity with the homologous proteins from *Gossypium hirsutum*, *Corchorus capsulars*. and *Theobroma cacao*, showing that it was highly conservative. This gene was named *HeLCYB* and the GenBank accession number was KX257998. Motif Scan analysis showed that HeLCYB protein had a conservative structure domain and a FAD binding domain in the position of 88-481 and 88-113 sites, respectively. Real-time PCR analysis revealed that *HeLCYB* expressed in different tissues of *Hibiscus esculentus* L., including roots, stems, leaves, flowers and fruits, and the level was the highest in mature leaves and 7 days after flowering during the process of leaf and fruit development, respectively. What's more, an ultra-high performance liquid chromatography (UPLC) method for the determination of *Hibiscus esculentus* L. carotenoid contents was explored. *Hibiscus esculentus* L. mainly contained lutein and β-carotene, and β-carotene contents was also the highest in mature leaves and 7 days

收稿日期:2017-04-12 修回日期:2017-06-23 网络出版日期:2017-12-26

URL; http://kns.cnki.net/kcms/detail/11.4996.S.20171226.1515.028.html

基金项目:福建省属公益类科研院所基本科研专项(2015R1026-9);福建省农业科学院蔬菜科技创新团队(STIT2017-1-2);福建省农业科学院"青年科技英才百人计划"项目(YC2017-5);国家大宗蔬菜产业技术体系(CARS-23-G-53);国家特色蔬菜产业技术体系(CARS-24-G-07)

第一作者研究方向为蔬菜生物技术与育种研究。E-mail:248937256@qq.com

通信作者:朱海生,研究方向为园艺植物生物技术与育种研究。E-mail:zhs0246@163.com

after flowering during the process of leaf and fruit development respectively, which probably related to the changes in *HeLCYB* genes expression. These results revealed the expression of *HeLCYB* gene and the accumulation characteristics of carotenoid contents, and provided a base for the study of carotenoid molecular regulation mechanism in *Hibiscus esculentus* L. .

Key words: Hibiscus esculentus L.; Lycopene β-cyclase LCYB gene; carotenoid; UPLC

类胡萝卜素在叶绿体、有色体中合成,行使着植物的各种基本功能。在叶绿体中,类胡萝卜素起着光捕捉、光保护、光修复等作用[1]。在有色体中,类胡萝卜素负责水果和鲜花的着色,艳丽的色彩可以引诱昆虫从而协助传播后代[2]。类胡萝卜素能够改善人类健康,一些β-环基团类胡萝卜素是维生素 A 的前体,服用维生素 A 补充剂能够使低龄儿童的全因死亡率大幅下降[3-5]。另外,摄入富含类胡萝卜素的食品可以作为治疗心血管疾病、骨质疏松和前列腺癌等的潜在手段[6-8]。因此,目前诸多研究都关注于类胡萝卜素的调控机制方面。

番茄红素 β-环化酶(LCYB, lycopene beta-cyclase)调控 β-胡萝卜素与含 β-环的胡萝卜素的生物合成, LCYB 编码的基因是基因工程改良植物类胡萝卜素含量的重要靶点^[9-10]。在白肉番茄 Beta 变种中,因为 *LCYB* 表达上调导致其 β-胡萝卜素含量远远超过野生种^[11];在红瓤西瓜中, *LCYB* 突变致使β-环化酶的活性降低,引起番茄红素积累^[12];在黄肉番木瓜中,番茄红素全数被高水平的 *LCYB* 基因合成为 β-胡萝卜素^[13];萝卜中 *LCYB* 基因的沉默表达及过量表达分别能使 β-胡萝卜素的含量降低和升高^[14];在成熟的猕猴桃果实中, *LCYB* 的表达可调控 β-胡萝卜素含量^[15]。

黄秋葵(Hibiscus esculentus L.),秋葵属,原产于非洲东北部,世界栽培广泛,近年来,国内引进推广较快,栽培面积逐年增长。黄秋葵以食嫩果为主,含丰富蛋白质、维生素及矿物盐、糖聚合体等营养成分,是一种具有较高营养价值、保健功能的健康蔬菜^[16-17]。此外,黄秋葵植株生长量大,产量高,可达90 t/hm²,叶片、茎秆中富含叶黄素、β-胡萝卜素、粗纤维和粗蛋白,是良好的天然着色剂原料和植物蛋白饲料^[18]。本研究首次成功获得黄秋葵 HeLCYB 基因全长,分析了 HeLCYB 基因表达和类胡萝卜素积累特性,对揭示 HeLCYB 基因在黄秋葵类胡萝卜素合成中的作用具有重要理论意义,为开展黄秋葵类胡萝卜素分子调控机制奠定了基础。

1 材料与方法

1.1 试验材料

材料为红色黄秋葵品种、白色黄秋葵品种、绿色黄秋葵品种,由福建省农业科学院蔬菜研究中心提供。取3个品种的根、茎、叶(幼叶:叶龄10 d,嫩叶:叶龄20 d,成熟叶:叶龄30 d,老叶:叶龄50 d)、花、果(花后1 d、花后3 d、花后5 d、花后7 d、花后10 d的果实)存于-80 ℃冰箱中备用。

1.2 总 RNA 提取及 cDNA 合成

植物材料的总 RNA 采用通用植物总 RNA 提取试剂盒(百泰克生物技术有限公司)提取;RNA 的质量用凝胶电泳与紫外分光光度计检测;总 RNA 逆转录应用 M-MLV 反转录酶(TaKaRa 公司)。

1.3 HeLCYB 基因序列的克隆

根据 GenBank 上陆地棉(Gossypium hirsutum)、 黄蜀葵(Abelmoschus manihot (L.) Medicus) [19]、柿子(Diospyros kaki)、茄子(Solanum lycopersicum)的 LCYB 保守序列,设计一对简并引物 HB1-F(上游)、 HB1-R(下游)(表 1), PCR 扩增黄秋葵嫩叶 cDNA。 PCR 反应程序为: 94 $^{\circ}$ 预变性 5 min; 94 $^{\circ}$ 变性 30 s,53 $^{\circ}$ 退火 30 s,72 $^{\circ}$ 延伸 1 min,40 个循环; 72 $^{\circ}$ 延伸 10 min。用 0.8% 琼脂糖凝胶电泳检测 PCR 产物,目的片段经回收(美国 Omega 公司)、连接(载体 pMD18-T,宝生物工程有限公司)、转化(大肠杆菌 DH5 $^{\circ}$ 0,宝生物工程有限公司)、或白斑筛选、PCR 鉴定、测序(上海生工生物工程有限公司),最后获得 LCYB 保守片段。

根据 *LCYB* 基因保守区克隆测序结果,设计 3′端上游引物 HB-3′(表 1),与通用引物 AUAP(表 1) 配对进行 PCR 扩增。

根据已获得的序列,设计了两个 5′端下游引物 HB-5′-1 和 HB-5′-2(表 1)。以 HB-5′-1 为引物应用 Prime Script™ 1st StrandcDNA Synthesis Kit 试剂 盒(宝生物有限公司),合成 cDNA 第 1 链,随后加同聚物尾,合成 cDNA 第 2 链,产物作为扩增模板以 HB-5′-2 与 AUAP 配对进行 PCR 扩增。将扩增得到的 3′和 5′ Race 产物对比拼接。

表 1 黄秋葵 HeLCYB 基因克隆与表达的引物

Table 1 Primers used to isolate and analyze the expression of HeLCYB gene in Hibiscus esculenta L. Banks

引物名称	引物序列	作用		
Primer name	Primer sequence	Function		
AP	5'-GGCCACGCGTCGACTAGTAC(T)17-3'	反转录引物 Reverse transcription primer		
AAP	5'-GGCCACGCGTCGACTAGTAC(G)8-3'	通用引物 Anchored primer		
AUAP	5'-GGCCACGCGTCGACTAGTAC-3'			
HB1-F	5'-CCCCTTCCAGTGCTACCCCAA-3'	保守区引物 For the conserved fragment		
HB1-R	5'-TCGTCGCAGATGCCATAGTTC-3'			
HB-3′	5'-TCGTCGCAGATGCCATAGTTC-3'	3'RACE 引物 3'RACE		
HB-5′-1	5'-GCAAGAGTTCTTGCAACCATGTA-3'	5'RACE 引物 5'RACE		
HB-5′-2	5'-AGGGACCCACCCATCGGAATA-3'	反转录引物 Reverse transcription primer		
HeLCYB-F	5'-CCATGGATACTTTACTTAGAAC-3'	扩增开放阅读框引物 For the cDNA of ORF		
HeLCYB-R	5'-CTTATTCTCTATCCTGCACT-3'			
B2S	5'-GAACTCTTCCTTTAGCCAACA-3'	表达引物 For the expression of HeLCYB		
B2X	5'-AATGAAACCCAGCCACAA-3'			
NE-F	5'-CTGAGAAACGGCTACCACAT-3'	内参基因引物 For the internal control		
NE-R	5'-ACCCAAGGTCCAACTACGAG-3'			

在黄秋葵 *HeLCYB* 基因 cDNA 全长的基础上,设计一对其 ORF 扩增引物 HeLCYB-F、HeLCYB-R,用以验证已得序列。

1.4 HeLCYB 基因的生物信息学分析

应用 DNAMAN 6.0 用于引物设计、多序列比对;使用 ProtParam (http://web. expasy. org/protparam/)和 ProtScale(http://web. expasy. org/protscale/0)在线软件分析蛋白一级结构;翻译后蛋白修饰运用 Motif Scan(http://myhits. isb-sib. ch/cgibin/motif_scan)在线分析;保守结构域运用 SMART(http://smart.embl-heidelberg. de/)软件分析;应用 bioxm 预测分子量、蛋白质的等电点;应用 SOMPA 软件分析蛋白二级结构;利用 SWISS-MODEL 在线软件进行蛋白3D 结构建模;采用 SMART(http://smart. embl-heidelberg. de/) ClustalX 1.81 软件和 MEGA 4.0 软件构建进化树。

1.5 HeLCYB 基因的实时荧光定量分析

依据黄秋葵 *HeLCYB* 基因全长序列,应用 Primer Express 3.0 软件,遵照定量 PCR 引物设计的原则设计一对荧光定量特异引物 B2S 和 B2X(表 1),以黄秋葵 18s rRNA(GenBank: AF069229.1)作为内参,设计内参引物 NE-F 和 NE-R(表 1)。应用Power SYBR Green PCR Master Mix(美国,ABI)试剂盒进行实时定量 PCR 扩增(ABI7500)。25 μL 反应体系:12.5 μL Power SYBR Green PCR Master Mix,

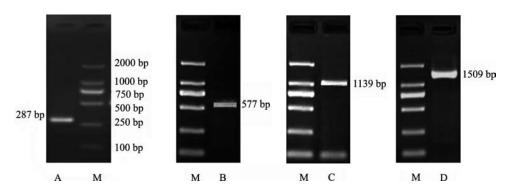
1 μL cDNA,上、下引物各 0.5 μL(10 μmol/L),用 双蒸水补充至 25 μL。反应程序:95 $^{\circ}$ 预变性 10 min;95 $^{\circ}$ 变性 15 s,56 $^{\circ}$ 退火 1 min,72 $^{\circ}$ 延伸 1 min,40 个循环。每个反应设 3 次重复,试验结果应用 ABI 7500 分析软件中 Comparative CT ($\Delta\Delta$ CT)法分析。基因表达差异显著性分析使用 SPSS 软件。

1.6 类胡萝卜素提取和超高效液相色谱测定

液氮研磨样品,称取2g粉末,用50mL浸提剂 (丙酮: 石油醚 = 2:3)(含 0.1% BHT)混匀于 50 ℃ 下黑暗浸提,过滤采集上清液,重复上述操作直到渣 变白,集中提取液,用旋转蒸发仪40℃下蒸干,复溶 于 20 mL 的石油醚(含 0.1% BHT)中,加 20 mL 皂 化液 10% KOH-甲醇, 放置过夜, 样品经过洗涤, 过 滤并蒸干,最后用丙酮定容至5 mL,氮储于 -70 ℃, 超高效液相色谱(UPLC, ultra performance liquid chromatography)分析之前用 0.22 μm 的尼龙膜过滤。用 ACQUITY UPLC BEH C18 柱 (2.1 mm × 50 mm, 1.7 μm) (Waters, USA) 分离、鉴别类胡萝卜素种 类,流动相为乙腈甲醇(90:10 v/v),在450 nm 下 检测类胡萝卜素成分(叶黄素、番茄红素、β-胡萝 卜素和β-隐黄质)并用它们相应的标准曲线进行 定量。类胡萝卜素总量为各个类胡萝卜素成分的 总和,全部数据至少经过3次独立试验并用平均 值±标准差。

2 结果与分析

2.1 HeLCYB 基因克隆


应用简并引物 LCYB-F 和 LCYB-R,以黄秋葵嫩叶总 RNA 逆转录的 cDNA 第1链作为模板,进行 PCR 扩增,扩增得到一条与预期大小吻合的近300 bp 的条带(图1A)。经回收、连接、转化、PCR 鉴定、测序,测得该片段实际为287 bp,经BLASTn分析,确认是黄秋葵 HeLCYB 基因的保守序列。

通过 3' RACE, 扩增得到 577 bp 的片段(图

1B),除去与保守区重叠区段与引物,实际大小为 406 bp。经 NCBI 网站 BLAST 检索确认其为黄秋葵 *HeLCYB* 基因的 3′端序列。

根据 5′RACE 的原理, 扩增出了 5′端 1139 bp 的片段(图 1C), 除保守区重叠区段实际为 1104 bp, 经 NCBI 网站 BLAST 核实其是黄秋葵 *HeLCYB* 基因的 5′端序列。

所得的 3'RACE、保守区和 5'RACE 的序列经比对拼接得一大小为 1797 bp 的全长序列,含 1509 个碱基(图 1D)的完整开放阅读框(ORF),编码了 503 个氨基酸。

M:DNA 标准分子量 DL2000; A:HeLCYB 保守区扩增产物;B: 3'RACE 扩增产物;C:5'RACE 扩增产物;D:ORF 扩增产物 M:DL 2000 marker, A:Conserved region of HeLCYB, B:3'RACE product, C:5'RACE product, D:ORF amplified product

图 1 黄秋葵 HeLCYB 基因的克隆

Fig. 1 Cloning of HeLCYB gene in Hibiscus esculenta L.

2.2 HeLCYB 基因序列的生物信息分析

序列分析显示, HeLCYB 具有一个 1509 bp 的完整 ORF,编码区的 GC 含量占 41%,预测编码 503 个 氨基酸,理论分子量(Mw)为 56. 288 kD,等电点(pI)为 4.577, pH = 7.0 时的带点荷数(ch)为 -8.306;在构成该蛋白的 20 种氨基酸中,亮氨酸(Lue)含量最高(11.7%),缬氨酸(Val)次之(8.0%),色氨酸(Trp)含量最低(1.4%);就氨基酸的特性而言,该蛋白不包含强碱性氨基酸、强酸性氨基酸(D、E),含有 405 个疏水氨基酸(A、I、L、F、W、V)和 719 个极性氨基酸(N、C、Q、S、T、Y),脂肪族指数(AI)是 92.62,不稳定系数(II)是 36.00;其蛋白的总体平均疏水性(GRAVY)是 -0.133,因此预测为亲水性蛋白。

Motif Scan 分析表明,88~481 位为保守区蛋白结构域,88~113 位为 FAD 蛋白结合域。SOMPA 分析 HeLCYB 蛋白的二级结构表明,该蛋白有 α 螺旋38.970%、不规则卷曲 44.33% 和延伸链结构16.70%,未发现 β 转角的存在。利用 SWISS-MOD-

EL 在线构建蛋白 3D 模型, HeLCYB 蛋白的保守结构域三维结构模型如图 2 所示。

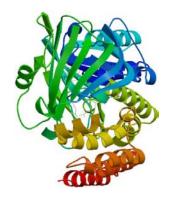
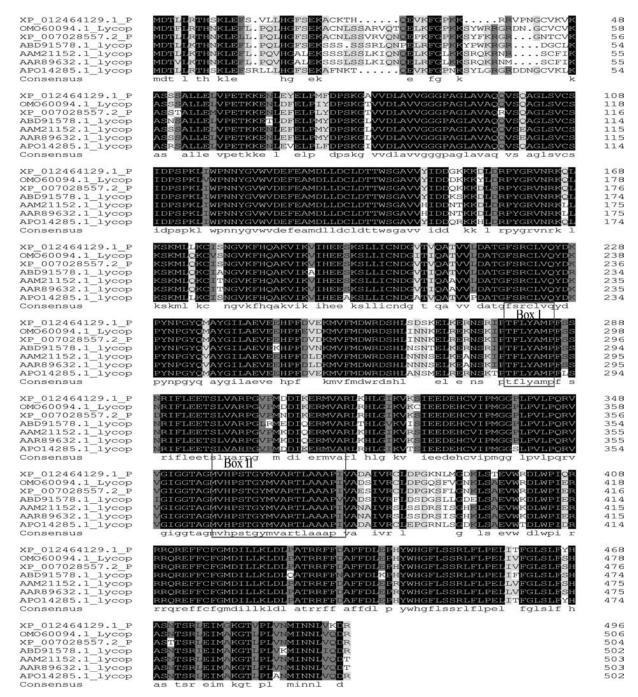



图 2 HeLCYB 蛋白三级结构 Fig. 2 Tertiary structure of HeLCYB protein

比对 HeLCYB 编码的氨基酸序列和 GenBank 其他植物 LCYB 蛋白序列,显示 HeLCYB 与多种植 物 LCYB 氨基酸序列均具有较高同源性,并有多个 保守区域。其中与陆地棉(XP_012464129.1)有 91%的同源性,与黄麻(OMO60094.1)、可可(XP_ 007028557. 2)、毛果杨(XP_002308903. 1)等序列也分别有 88%、88%、83%的同源性。HeLCYB 氨基酸序列具有"FLYAIVIP"序列及 FAD/NAD(P)结合区

(图 3),因此确认所得序列为黄秋葵 *HeLCYB* 基因全长 cDNA 序列,将其命名为 *HeLCYB*, GenBank 登录号为 KX257998。

陆地棉 Gossypium hirsutum L. XP_012464129. 1;黄麻 Corchorus capsularis L. OMO60094. 1;可可 Theobroma cacao L. XP_007028557. 2; 番木瓜 Chaenomeles sinensis L. ABD91578. 1;甜橙 Citrus sinensis L. AAM21152. 1;柚子 Citrus maxima B. AAR89632. 1;

黄秋葵 Hibiscus esculentus L. AP014285. 1; Box I 是 "FLYAIVIP" 序列; Box Ⅱ 是 FAD/NAD(P) 结合区

Gossypium hirsutum L. XP_012464129.1, Corchorus capsularis L. OMO60094.1, Theobroma cacao L. XP_007028557.2,

 $Chae nome les\ sinens is\ L.\ ABD 91578.\ , \textit{Citrus\ sinens is}\ L.\ AAM 21152.\ 1\ , \textit{Citrus\ maxima}\ B.\ AAR 89632.\ 1\ , \textit{Hibiscus\ esculentus}\ L.\ APO 14285.\ 1\ , \textit{Citrus\ maxima}\ B.\ AAR 89632.\ 1\ , \textit{Hibiscus\ esculentus}\ L.\ APO 14285.\ 1\ , \textit{Citrus\ maxima}\ B.\ AAR 89632.\ 1\ , \textit{Hibiscus\ esculentus}\ L.\ APO 14285.\ 1\ , \textit{Citrus\ maxima}\ B.\ AAR 89632.\ 1\ , \textit{Citrus\ maxima}\$

Box I indicates the sequence of "FLYAIVIP", Box II indicates the FAD/NAD(P)

图 3 黄秋葵 HeLCYB 氨基酸同源性分析

Fig. 3 Homology analysis of HeLCYB in Hibiscus esculentus L.

将 HeLCYB 与其他 22 种植物 LCYB 同源蛋白进行多重序列比较,以了解与其他 LCYB 同源蛋白在系统进化的关系,应用 MEGA 4.0 软件构建系统进化树。结果表明,与 HeLCYB 遗传关系最近的是陆地棉,遗传关系较远的是桑树、金丝枣(图 4)。

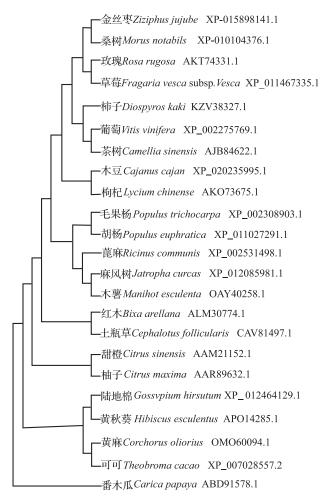


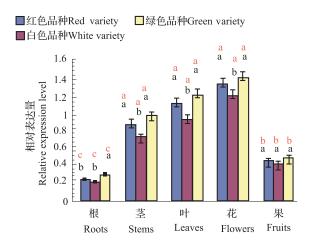
图 4 黄秋葵 HeLCYB 与其他植物 22 个 LCYB 蛋白的系统进化分析

Fig. 4 Phylogenetic analysis of HeLCYB in *Hibiscus* esculentus L. with 22 other plant LCYBs

2.3 HeLCYB 基因的表达分析

2.3.1 HeLCYB 基因在黄秋葵不同品种和组织中的表达 以黄秋葵 18S rRNA 作为内参,运用荧光定量 PCR 技术检测 HeLCYB 在 3 个不同黄秋葵品种、组织中的表达,结果表明(图 5),HeLCYB 在根、茎、叶、花和果实等各器官中均有表达,花中表达量最高,其次为叶、茎和果实,根的表达量最低,在不同品种间,同一器官以绿色品种的表达更为丰富,红色品种次之,白色品种较低。经软件分析,HeLCYB 基

因表达在花、叶、茎中差异不显著,花、果、根中表达差异显著,在根中表达为白色品种和红色品种无显著差异,而绿色品种与其他两个品种差异显著,在茎、叶、花的表达中,红色品种和绿无品种无显著差异,白色品种与其他两个品种差异显著。


2.3.2 HeLCYB 基因在黄秋葵叶片发育过程中的表达 黄秋葵的叶片可提取天然色素(叶黄素和β-胡萝卜素),黄秋葵叶粉添加禽类饲料,可提高其产量及品质^[20]。HeLCYB 在黄秋葵叶片不同生长阶段的表达分析表明,在叶片的生长过程中 HeLCYB 表达量逐渐增加,到成熟叶时达到最高,之后逐渐下降,老叶中最低,3个黄秋葵品种间表达量变化趋势一致。经差异分析得,HeLCYB 在幼叶、嫩叶、成熟叶中表达无显著差异,老叶与其他叶片发育时期的表达差异显著,HeLCYB 在红色品种和绿色品种的幼叶、嫩叶、老叶表达无显著差异,白色品种与其他两个品种差异显著,3 个品种的成熟叶表达无显著差异(图6)。

2.3.3 HeLCYB 基因在黄秋葵果实发育过程中的 表达 在黄秋葵果实不同发育阶段, HeLCYB 基因 表达量伴随着果实发育逐渐增加, 花后 7 d 表达量 达到峰值, 随后表达量迅速下降。HeLCYB 基因表 达在红色品种和绿色品种的花后 3 d、5 d、7 d 的果实中表达无显著差异, 白色品种与其他两个品种差 异显著, 3 个品种的花后 1 d、10 d 的果实表达无显著差异(图 7)。

2.4 黄秋葵类胡萝卜素含量 UPLC 方法的建立和 测定

通过对黄秋葵类胡萝卜素提取方法筛选、色谱条件优化、重复性、精密度和回收率试验,建立黄秋葵类胡萝卜素超高效液相色谱法标准分析体系。采用 ACQUITY UPLC BEH C18 色谱柱,以乙腈:甲醇=9:1 为流动相,流速 0.5 mL/min,检测波长450 nm,柱温 28 $^{\circ}$,进样体积 50 μL,检测在 5 min 内完成,平均回收率达到 95.3% ,变异系数为 1.38% ~ 1.76%。在黄秋葵的各组织中均检测到叶黄素、β-胡萝卜素,未检测到番茄红素、β-隐黄质(图 8)。

2.4.1 不同品种黄秋葵各组织类胡萝卜素含量测定 在黄秋葵各组织中,叶的叶黄素含量最高,茎其次,根中含量最低;β-胡萝卜素在花中最丰富,叶其次,根中最低。除红色品种花的叶黄素、β-胡萝卜素较绿色品种高外,其余各器官均低于绿色品种,白色品种仅在果实中叶黄素含量比红色品种略高(表2)。

红色字母表示 HeLCYB 在黄秋葵各组织表达的差异显著性; 黑色字母表示 HeLCYB 在黄秋葵不同品种间的表达差异显著性 Red letters represent significant expression differences of HeLCYB gene between different tissues, Black letters represent expression differences of HeLCYB gene between different varieties

图 5 HeLCYB 在不同黄秋葵品种、组织中的表达 Fig. 5 Expression of HeLCYB in different varieties and tissues

■绿色品种Green variety

■红色品种Red variety

leaves

■白色品种White variety 1.2 a a b 1 b h Relative expression b a 0.8 0.6 0.4 0.2 0 幼叶 嫩叶 成熟叶 老叶 Juvenile Tender Mature


红色字母表示 HeLCYB 在黄秋葵叶发育过程表达的差异显著性: 黑色字母表示 HeLCYB 在黄秋葵不同品种间的表达差异显著性 Red letters represent significant expression differences of HeLCYB gene between leaf development, Black letters represent expression differences of HeLCYB gene between different varieties

leaves

leaves

图 6 黄秋葵叶片发育过程中 HeLCYB 的表达 Fig. 6 Expression of *HeLCYB* in the process of leaf development

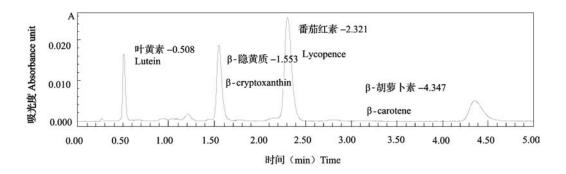
2.4.2 叶片生长发育过程类胡萝卜素含量变化 百 一品种中伴随叶片的生长发育叶黄素、B-胡萝卜素 含量逐步升高,成熟叶时达到峰值,叶成熟后到叶片 老化其类胡萝卜素含量迅速下降。不同品种叶片发 育的叶黄素、β-胡萝卜素含量变化趋势一致,以绿色 黄秋葵品种的成熟叶总含量最高,而白色黄秋葵品

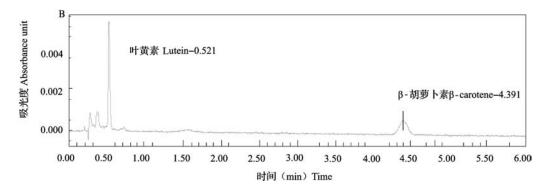
红色字母表示 HeLCYB 在黄秋葵果实发育过程表达的差异显著性; 黑色字母表示 HeLCYB 在黄秋葵不同品种间的表达差异显著性

Red letters represent significant expression differences of HeLCYB gene between fruit development,

Black letters represent expression differences of HeLCYB gene between different varieties

图 7 黄秋葵果实发育过程中 HeLCYB 的表达 Fig. 7 Expression of HeLCYB in the process of fruit development


种老叶总含量最低,在同一时期3个品种相较以绿 色品种含量略高,红色品种含量其次,白色品种含量 最低(表3)。


2. 4. 3 果实发育过程中类胡萝卜素含量变化 黄秋葵果实发育过程中 β-胡萝卜素含量呈现先上 升后下降态势,在花后7d达到峰值,随后下降。叶 黄素在花后3d含量最高,随后缓慢下降。花后1d 的果实叶黄素、类胡萝卜素总量均最低。不同80种 表现同一变化规律,以绿色黄秋葵品种的花后7d 果实类胡萝卜素总含量最高,白色黄秋葵品种花后 1 d 果实胡萝卜素总含量最低。不同黄秋葵品种同 一时期的类胡萝卜素总含量以绿色品种最高,红色 品种次之,白色品种总含量最低(表4)。

讨论 3

Old leaves

类胡萝卜素既是影响果实外观品质和花卉观赏 价值的重要因素,也是决定水果和蔬菜内在营养品质 的重要指标[21]。不同的蔬菜、水果中类胡萝卜素的 组分与含量差异较大。番茄以番茄红素为主,绿叶蔬 菜以胡萝卜素为主,而羽衣甘蓝、万寿菊、菠菜主要以 叶黄素为主[22-23]。本研究建立和优化了黄秋葵类胡 萝卜素超高效液相色谱分析体系,分析了黄秋葵类胡 萝卜素积累特点,黄秋葵主要含有叶黄素和β-胡萝 卜素。β-胡萝卜素是维护人体健康不可缺少的营养 素,在淬灭自由基、抗癌、预防心血管疾病、白内障及 抗氧化上有显著的功能[24-25]。黄秋葵各组织中均含 有 β-胡萝卜素。叶片中 β-胡萝卜素含量伴随着叶片

A:类胡萝卜素标准样色谱图;B:黄秋葵成熟果实类胡萝卜素提取物色谱图 A:UPLC chromatogram of carotenoids standards,B:UPLC chromatogram of carotenoids extracted from mature fruit in *Hibiscus esculentus* L.

图 8 黄秋葵类胡萝卜素含量的 UPLC 分析

Fig. 8 UPLC analysis of carotenoid component and content of *Hibiscus esculentus* L.

表 2 不同品种黄秋葵各组织类胡萝卜素含量

Table 2 Total carotenoid and each component content of different tissues in Hibiscus esculentus L.

(μg/100 g • FW)

品种 Variety	类胡萝卜素类型 Carotenoid type	根 Root	茎 Stem	п † Leaf	花 Flower	果实 Fruit
红色黄秋葵 Red Hibiscus esculentus	叶黄素 Lutein	1. 32 ± 0. 56a	17. 42 ± 1. 28c	22. 63 ±0. 75d	14. 42 ± 0. 67 c	2. 12 ± 1. 31b
	β-胡萝卜素 β-carotene	$8.03 \pm 3.26a$	126. 32 ±8. 16c	138. 03 ± 7. 37d	146. 21 ± 5. 61d	28. 57 \pm 2. 39b
	类胡萝卜素总量 Carotenoids	9. 35 ± 2. 57a	143. 74 ±5. 47c	160. 66 ± 7. 43 d	160. 63 ±4. 43d	30.69 ± 3.70 b
白色黄秋葵	叶黄素 Lutein	1. 16 ± 0. 43a	14. 86 ± 1. 34d	17. 98 ±2. 36d	12. 62 ± 1. 44c	2. 14 ± 0.71 b
White Hibiscus esculentus	β-胡萝卜素 β-carotene	6. 39 ± 1. 87a	119. 54 ±2. 53c	125. 78 ± 5. 83d	129. 14 ±4. 86d	17. 59 ± 1. 93b
	类胡萝卜素总量 Carotenoids	7. 55 ± 2. 13a	134. 40 ±2. 33c	143. 76 ± 6. 96d	141. 76 ± 396d	19. 73 ± 2. 41b
绿色黄秋葵 Green Hibiscus esculentus	叶黄素 Lutein	1. 69 ± 0. 23a	21. 98 ±4. 86d	24. 02 ±4. 79d	11. 58 ± 3. 39c	$2.83 \pm 0.17b$
Green Hibiscus escuientus	β-胡萝卜素 β-carotene	9. 65 ± 1. 79a	131. 16 ±9. 08c	140. 94 ± 8. 23 d	145. 18 ± 6. 06d	29. 65 ± 0. 89b
	类胡萝卜素总量 Carotenoids	11. 43 ± 1. 12a	153. 14 ±7. 39c	164. 96 ± 10. 8od	156. 76 ± 5. 81 c	32. 48 ± 0. 99b

a、b、c、d 代表横向多重比较 SNK 检验在 P=0.05 水平的差异显著性,下同

a,b,c,d stands for multiple comparison SNK tests with significant differences in P=0.05 significant levels, the same as below

表 3 不同品种黄秋葵叶片生长过程的类胡萝卜素含量

Table 3 Total carotenoid and each component content of leaf in Hibiscus esculentus L.

(µg/100 g • FW)

品种 Variety	类胡萝卜素类型 Carotenoid type	幼叶 Juvenile leaf	嫩叶 Tender leaf	成熟叶 Matured leaf	老叶 Old leaf
Variety	Carotenoid type	Juvennie ieai	Tender rear	matured rear	Old Ical
红色黄秋葵	叶黄素 Lutein	10. 57 \pm 0. 264b	20. 42 \pm 0. 67 c	21. 04 \pm 0. 39 c	$8.74 \pm 0.09a$
Red Hibiscus esculentus	β-胡萝卜素 β-carotene	23. 17 \pm 1. 47b	52. $24 \pm 2.23c$	138. 03 $\pm 7.37 \mathrm{d}$	$21.46 \pm 0.15a$
	类胡萝卜素总量 Carotenoids	33. 74 ± 1.51 b	72. 66 \pm 2. 42 c	159. 07 $\pm 7.43 \mathrm{d}$	30. $20 \pm 0.20a$
白色黄秋葵	叶黄素 Lutein	8. 27 \pm 0. 87b	$16.62 \pm 1.44c$	17. 89 \pm 1. 39d	7. $85 \pm 0.23a$
White Hibiscus esculentus	β-胡萝卜素 β-carotene	22. 69 ± 0.55 b	64. 21 $\pm 4.39c$	125. 78 ± 5.83 d	21. 13 ± 0. 18a
	类胡萝卜素总量 Carotenoids	30.96 ± 1.25 b	80. 83 $\pm 4.56c$	143. 67 ± 6.96 d	$28.98 \pm 0.33a$
绿色黄秋葵	叶黄素 Lutein	12. 24 \pm 0. 42b	21. $58 \pm 3.39c$	24. 31 \pm 1. 46d	11. 27 \pm 0. 27a
Green Hibiscus esculentus	β-胡萝卜素 β-carotene	22. 99 ± 0.58 b	84. 91 ± 5. 74c	$140.94 \pm 8.23 \mathrm{d}$	20. 87 ± 2. 62a
	类胡萝卜素总量 Carotenoids	35.23 ± 0.74 b	$106.49 \pm 6.33c$	165. 25 ± 7 . 82d	32. 14 ± 2 . $82a$

表 4 不同品种黄秋葵果实过程的类胡萝卜素含量

Table 4 Total carotenoid and each component content of fruit in Hibiscus esculentus L.

(µg/100 g • FW)

品种 Variety	类胡萝卜素类型 Carotenoid type	花后 1 d 1 day after flowering	花后 3 d 3 days after flowering	花后 5 d 5 days after flowering	花后7d 7 days after flowering	花后 10 d 10 days after flowering
红色黄秋葵	叶黄素 Lutein	0. 42 ± 0. 13a	3. 04 ± 0. 19d	2. 63 ± 0. 57d	2. 12 ± 1. 31 c	1. 64 ± 0. 24b
Red Hibiscus esculentus	β-胡萝卜素 β-carotene	$2.47 \pm 0.33a$	9. 15 \pm 1. 37b	$16.79 \pm 2.78c$	$28.57 \pm 2.39 \mathrm{d}$	$2.10 \pm 0.89a$
	类胡萝卜素总量 Carotenoids	2. $89 \pm 0.41a$	12. 52 ± 1.17 b	19. 42 ± 3. 25c	$30.69 \pm 3.70 d$	$3.74 \pm 0.96a$
白色黄秋葵	叶黄素 Lutein	$0.32 \pm 0.16a$	$2.85 \pm 0.32d$	$2.62 \pm 0.94 d$	2. $14 \pm 0.71 c$	1. 59 ± 0.19 b
White Hibiscus esculentus	β-胡萝卜素 β-carotene	2. $12 \pm 0.08a$	$5.97 \pm 0.98 \mathrm{b}$	12. 33 \pm 2. 35c	17. 59 ± 1. 93 d	1. 96 ± 0. 99a
	类胡萝卜素总量 Carotenoids	2. 44 ± 0. 18a	8. 82 ± 1. 13b	14. 95 ± 3. 08c	19. 73 ± 2. 41 d	$3.55 \pm 1.03a$
绿色黄秋葵	叶黄素 Lutein	0. 62 ± 0. 22a	$3.27 \pm 0.23 d$	$3.01 \pm 0.69 d$	$2.83 \pm 0.17c$	1. 85 \pm 0. 37b
Green Hibiscus esculentus	β-胡萝卜素 β-carotene	3. $36 \pm 0.57a$	10. 11 \pm 1. 37b	18. 83 ± 2. 28c	29. 65 ± 0. 89d	2. 68 ± 2. 13a
	类胡萝卜素总量 Carotenoids	$3.98 \pm 0.69a$	13. 38 \pm 1. 29b	$21.84 \pm 2.69c$	32. $48 \pm 0.99 d$	$4.53 \pm 1.97a$

的发育逐步升高,成熟叶时达到峰值,叶片老化后迅速下降。黄秋葵茎、叶的类胡萝卜素含量丰富,因其生长期短、产量大,是作为天然着色剂的重要植物源^[26]。果实中β-胡萝卜素含量伴随着果实的发育呈现先上升后下降态势,在花后7 d 达到峰值,此时也是黄秋葵果实最适宜采收期^[27-28]。

LCYB 是类胡萝卜素合成过程中的下游基因,促使番茄红素向 β-胡萝卜素转化合成。在番茄、木瓜等作物中, β-胡萝卜素含量与 LCYB 基因表达量呈正相关^[29,13]。在小麦中,通过 RNA 干扰使 LCYB 基因发生转录后沉默,检测发现转基因植株的 LCYB 基因导入番茄中,发现转基因植株中,外源 LCYB 超量表达,番茄红素大量向 β-胡萝卜素转化,β-胡萝卜素的含量 极显著的高于对照^[31]。本研究利用 RACE 和 RT-PCR 技术,首次克隆获得黄秋葵 HeL-CYB 基因,其全长为 1797 bp,含有 1509 个碱基的开

放阅读框(ORF),编码 503 个氨基酸。序列分析表 明, HeLCYB 存在高度保守区域且包含植物 LCYB 的共同特征"FLYAIVIP"序列和 FAD/NAD(P)结合 区[32],这些高度保守的残基与催化功能有关[33]。 黄秋葵 HeLCYB 的氨基酸序列与陆地棉有高达 91%的同源性。系统进化树分析显示,黄秋葵与陆 地棉 LCYB 有较近的亲缘关系,与桑树、金丝枣亲缘 关系较远。实时荧光定量 PCR 分析发现, HeLCYB 基因在黄秋葵各组织中均有表达。在黄秋葵叶片 中,伴随着叶片的生长,HeLCYB 的表达量逐渐增 加,在成熟叶中达到最高,之后逐渐下降。在黄秋葵 果实发育过程中, HeLCYB 基因表达量呈现先上升 后下降趋势,在花后7 d 达到峰值,随后下降。HeL-CYB 基因的表达趋势与 β-胡萝卜素含量变化规律 基本一致,与在番茄、木瓜、小麦、番茄等众多研究结 果一致[13,29-31],暗示 HeLCYB 基因在调控黄秋葵 β -胡萝卜素生物合成中起重要作用, HeLCYB 基因表 达与 β-胡萝卜素合成存在密切的相关性。本研究 为进一步深入了解黄秋葵类胡萝卜素合成调控机制 奠定基础,为创制高类胡萝卜素含量新种质资源、开 展类胡萝卜素品质育种提供了可能。

参考文献

- Ruiz-Sola M G, Rodríguez-Concepcin M. Carotenoid biosynthesis in Arabidopsis; a colorful pathway [J]. Arabidopsis Book, 2012, 10 (e0158):158-185
- [2] Howitt C A, Pogson B J. Carotenoid accumulation and function in seeds and non-green tissues [J]. Plant Cell Environ, 2006, 29 (3):435-445
- [3] West K P, Klemm R D W, Sommer A. Vitamin A saves lives. Sound science, sound policy [J]. World Nutr, 2010, 1(10):211-229
- [4] Mayo-Wilson E, Imdad A, Herzer K, et al. Vitamin A supplements for preventing mortality, illness and blindness in children aged under 5: systematic review and meta-analysis [J]. Br Med J, 2011,343 (7833):5094-5112
- [5] Tang G W, Hu Y M, Yin S A, et al. β-Carotene in Golden Rice is as good as β-carotene in oil at providing vitamin A to children [J]. Am J Clin Nutr, 2012, 96 (3):658-664
- [6] Fassett R G, Coombes J S. Astaxanthin; a potential therapeutic agent in cardiovascular disease [J]. Mar Drug, 2011, 9 (3); 447-465
- [7] Cazzonelli C I. Carotenoids in nature; insights from plants and beyond [J]. Funct Plant Biol, 2011, 38 (11):833-847
- [8] Yamaguchi M. Role of carotenoid β-cryptoxanthin in bone homeostasis [J]. J Biol Sci, 2012, 19 (1):19-36
- [9] 朱长甫,除星,王英典. 植物类胡萝卜素生物合成及其相关基因工程中的应用[J]. 植物生理与分子生物学学报,2004,30(6):609-618
- [10] 抗艳红,季静,胡军,等.农杆菌介导类胡萝卜素合成酶基因 LycB 转化水稻的研究[J].植物遗传资源学报,2011,12 (4): 605-611
- [11] Ronen G, Cohen M, Zimlir D, et al. Regulation of carotenoid biosynthesis during tomato fruit development; expression of the gene for lyeopene epsilon cyclase is down regulate during ripening and is elevated in the mutant Delta [J]. Plant J, 1999, 17 (4); 341-351
- [12] Bangh H, Kim S, Leskovar D, et al. Development of a codominant CAPS marker for allelic selection between canary yellow and red watermelon based on SNP in lycopene beta-cyclase (*LCYB*) gene [J]. Mol Breed, 2007, 20 (1):63-72
- [13] Devitt L C, Fanning K, Dietzgen R G, et al. Isolation and functional characterization of a lycopene β-cyclase gene that controls fruit colour of papaya (Carica papaya L.) [J]. J Exp Bot, 2010, 61 (1):33-39
- [14] Moreno J C, Pizarro L, Fuentes P, et al. Levels of lycopene β-cyclase 1 modulate carotenoid gene expression and accumulation indaucus carota [J]. PLoS One, 2013, 8 (3):58144-58156

- [15] Ampomah-Dwamena C, McGhie T, Wibisono R, et al. The ki-wifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit [J]. J Exp Bot, 2009, 60 (13):3765-3779
- [16] 卢隆杰, 苏浓, 岳森. 菜药花兼用型植物-黄秋葵[J]. 蔬菜, 2004 (10);36
- [17] Lawford B, Luther W J. Controlled atmosphere effects on physical changes ancle thylene evolution in harvested Okra [J]. Hortic Sci,1990,25 (1):92-95
- [18] 张慧,李涛,徐公世.一种前景广阔的天然食品着色剂-叶黄素[J].中国食品添加剂,2004(5):45-48.
- [19] 王旭,韩春乐,周亚楠,等. 黄秋葵查尔酮合成酶基因 AeCHS 的克隆与表达分析[J]. 植物遗传资源学报,2014,15 (3): 561-567
- [20] 叶花兰, 刘东祥, 刘国道. 黄秋葵作为禽用着色剂的品种比较试验[J]. 中国农学通报, 2007, 23(5); 428-431
- [21] 陶俊,张上隆. 园艺植物类胡萝卜素的代谢及其调节[J]. 浙 江大学学报,2003,29(5):585-590
- [22] Konings E J, Harry S R. Evaluation and validation of an LC method for the analysis of carotenoids in vegetables and fruit[J]. Food Chem, 1997, 4 (4):599-603
- [23] Chen M D, Zhu H S, Wen Q F, et al. Determination of carotenoids in strawberry by UPLC [J]. J Fruit Sci, 2013, 30 (4):706-711
- [24] 陈选阳,袁照年,张招娟,等. 甘薯番茄红素β-环化酶基因的 克隆与转化烟草的研究[J]. 作物学报,2007,33(10): 1724-1728
- [25] 赵倩,赖凡,于静娟,等. 谷子类胡萝卜素生物合成途径中番茄红素 β-环化酶基因的克隆[J]. 中国农业大学学报,2004,9
- [26] 刘东祥,叶花兰,刘国道.14个黄秋葵品系叶黄素和β-胡萝卜素产量比较试验[J].中国农学通报,2006,22(6);425-427
- [27] Singh P, Tripathi R D, Singh H N. Effect of age of picking on the chemical composition of the fruits of Okra [J]. Ind Agric Sci, 1974,44 (1);22-26
- [28] 许如意,罗丰,袁廷庆,等.不同采摘期对黄秋葵果实性状和 品质的影响[J].长江蔬菜,2011(2):18-20
- [29] Ronen G, Carmel-goren L, Zamir D, et al. An alternative pathway to beta-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato [J]. Proc Natl Acad Sci USA, 2000, 97 (20):11102-11107
- [30] 曾坚. 小麦番茄红素环化酶基因 TaLCYB 的 RNAi 载体构建 及遗传转化研究[D]. 武汉:华中科技大学,2013
- [31] 周文静. 红肉脐橙(*Citrus sinensis* [L.] Osbeck)番茄红素 β-环 化酶基因(*Lcyb*)功能的初步验证和分析[D]. 武汉:华中农 业大学.2008
- [32] Cunningham F X, Pogson B, Sun Z, et al. Functional analysis of the β and ζ-lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation [J]. Plant Cell,1996,8 (9):1613-1626
- [33] Daqiu Z, Yanle S, Guohua L, et al. Molecular cloning and expression of phytoene synthase, lycopene beta-cyclase, and beta-carotene hydroxylase genes in Persimmon (*Diospyros kaki* L.) fruits
 [J]. Plant Mol Biol Rep, 2011, 29 (2):345-351