基于全基因组芯片开发水稻 HRM 特异分子标记

金名捺1,潘英华2,丘式浚1,严 维1,邓汉超1,陈 慧1,梁云涛2

(¹深圳市作物分子设计育种研究院/深圳市分子设计育种重点实验室,深圳 广东 518107; ²广西壮族自治区农业科学院水稻研究所/广西水稻遗传育种重点实验室,南宁 530007)

摘要:植物中广泛分布着单核苷酸多态性(SNP)位点。在此基础上发展而来的 SNP 标记因其具有高分辨率和共显性 等优点,已成为当前作物遗传研究重要的分子工具。本研究拟建立基于高分辨率熔解曲线(HRM)技术的 SNP 分子标记, 从而实现对栽培稻和野生稻的高效基因分型,为今后水稻的基因挖掘、品种鉴定以及分子育种等提供可靠、快捷的技术工 具。利用水稻全基因组9 K SNP 芯片对栽培稻品种黄华占和野生稻 Y605 进行扫描,寻找两者之间的 SNP 位点,并将其开 发成基于 HRM 技术的特异分子标记。然后,利用这些分子标记对亲本黄华占、野生稻 Y605 以及两者的 BC3回交群体进行 分子检测,以验证其有效性。水稻9 K 基因芯片在黄华占与野生稻 Y605 之间总共找到了 4198 个 SNP 位点,它们在 12 条 染色体上较均匀分布。在水稻第1号染色体上随机挑选出 5 个 SNP 位点开发成基于 HRM 技术的特异分子标记。利用这 些标记对黄华占与野生稻 Y605 的 BC3F1和 BC3F2群体进行检测分析,发现它们都能准确区分亲本的纯合与杂合基因型。 并且,在回交后代的第1号染色体 ZY1-1~ZY1-4 标记区间检测到野生稻片段插入。水稻全基因组9 K SNP 芯片可以很好 地应用于水稻 SNP 标记的开发。开发的 SNP 特异标记能准确、高效地对栽培稻和野生稻进行基因分型。进一步完成基于 HRM 技术的水稻全基因组 SNP 标记的开发,可为今后野生稻的分子遗传研究、有利基因挖掘和育种应用提供高效的分子 检测手段。

关键词: HRM 技术; 水稻基因组 SNP 芯片; 分子标记; 野生稻; 有利基因挖掘

Development of HRM Molecular Markers of Rice Through the Method of Genome Chip Technique

JIN Ming-na¹, PAN Ying-hua², QIU Shi-jun¹, YAN Wei¹, DENG Han-chao¹, CHEN Hui¹, LIANG Yun-tao²

(¹ Shenzhen Institute of Molecular Crop Design/Shenzhen Key Laboratory of Molecular Design Breeding, Shenzhen Guangdong 518107; ² Rice Research Institute of Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning 530007)

Abstract: Single nucleotide polymorphism (SNP) sites are widely distributed in plants. SNPs-based markers have become an important molecular tool for crop genetic research due to their high resolution and co-dominant. This study aims to develop SNP molecular markers based on high resolution melting (HRM) technology and to estimate their genotyping efficiency between cultivated rice and wild rice, thus providing a reliable, simple and rapid tool for gene discovery, variety identification and molecular breeding in the future. Genome-wide scanning of SNPs was performed between the cultivar Huanghuazhan and wild rice *Oryza rufipogon* Griff. Y605 using the rice 9 K SNP microarray. Then we selected and developed HRM technology-based molecular markers from these SNPs. These markers were subsequently used for genotyping of BC_3 backcrossed populations with their parents Huanghuazhan and

收稿日期:2018-04-29 修回日期:2018-05-25 网络出版日期:2018-09-07

URL: http://kns.cnki.net/kcms/detail/11.4996.S.20180905.1717.005.html

基金项目:国家科技资源共享服务平台项目(NICGR2017-39);广西壮族自治区主席科技资金项目(1517-03);广西农业科学院基本科研业务专项项目(2015YT14)

第一作者主要从事水稻分子设计育种及重要农艺性状基因发掘,E-mail:jmnsw04138210@163.com;潘英华为共同第一作者 通信作者:梁云涛,主要从事种质资源研究,E-mail:Liangyt@sina.com

19 卷

Y605 to verify their validity. A total of 4198 SNPs were found, almost evenly distributed on all the chromosomes. Five randomly selected SNPs from the first chromosome were employed for conversion into HRM technology-based markers. These markers were accurate and efficient in genotyping of BC_3F_1 and BC_3F_2 populations of Huanghuazhan and wild rice Y605, as well as the homozygous parents and F_1 heterozygous. In addition, the introgression fragments from wild rice were detected in the ZY1-1-ZY1-4 marker interval of the first chromosome of the backcross. The genome-wide rice 9 K SNP microarray can be well applied to explore the polymorphism sites for developing user-friendly SNP markers, which are accurate and efficient in use of genotyping cultivated rice and wild rice. Further development of genome-wide rice SNP markers based on HRM technology will provide an efficient molecular detection tool for molecular genetic research, favorable genes discovery and breeding applications of wild rice.

Key words: HRM technology; rice genome SNP chip; molecular marker; wild rice; favorable genes discovery

水稻是我国最重要的粮食作物之一,长期的人 工定向选择导致栽培稻丢失了许多有利基因^[1],使 得选育出突破性的优良品种变得尤为困难。野生稻 长期生长在野外条件下,蕴藏有大量栽培稻缺乏的 优异基因,是天然的基因宝库^[1-2]。

随着分子生物学的发展,分子标记技术为野生 稻优异基因的发掘和利用提供了极大的便利^[3]。 李书柯等^[4]、梁新霞等^[5]和苏龙等^[6]用 SSR 分子标 记分别对福建漳州野生稻及普通野生稻和广西药用 野生稻进行遗传多样性研究,明确了当地野生稻的 遗传背景及亲缘关系,为今后野生稻优异基因资源 的发掘提供了数据支撑。Brondani 等^[7]用 156 个 SSR 和 STS 标记分析了普通栽培稻和展颖野生稻 BC₂F₂家系的 11 个产量相关性状: Rahman 等^[8]用 530个 SSR 和 STS 标记分析了小粒野生稻 AB 群体 的16个性状。另外,生物技术的发展推动了分子标 记的不断进步。其中,由于具有高密度、易分型等优 点,SNP标记已成为当前植物基因分析重要的检测 工具^[9]。近年,高分辨率熔解曲线(HRM, high resolution melting)分析技术作为一种新型基因分型遗 传学分析技术方法^[10-12],可以有效区分 SNP、SSR 和 InDel 等不同类型变异的杂合与纯合状态,检测各种 变异在后代群体中的分离,因此广泛应用于水稻、小 麦等作物的 SNP、InDel 和 SSR 等分子标记的基因分 型^[13-15]。

在传统育种过程中,常规技术难以消除野生稻 中不良性状的影响,导致野生稻资源育种利用进展 缓慢^[16]。而通过采用基于 HRM 技术的水稻全基 因组 SNP 分子标记,则能够对栽培稻中渗入的野生 稻片段进行精准检测,减少或避免与不良基因的连 锁累赘,从而快速培育出携带多种优良性状的野生 稻渗入系材料,加快野生稻优异基因资源的开发 利用。

本研究通过水稻全基因组9K SNP芯片对野生 稻渗入系供体亲本野生稻 Y605 和轮回亲本黄华占 进行扫描分析,将多态性 SNP 位点开发成基于 HRM 技术的分子标记,并随机挑选其中5 对引物对野生 稻渗入系 BC₃F₁和 BC₃F₂群体进行检测分析,以验证 该标记对水稻野栽基因分型的可行性和准确性,为 今后大规模构建野生稻渗入系和挖掘野生稻优异基 因提供高效的技术工具。

1 材料与方法

1.1 材料

本研究中的 2 个亲本分别为普通野生稻 Y605 (母本)和优质籼稻品种黄华占(父本)。以黄华占 为父本与 Y605 杂交获得 F₁,用 F₁为父本与黄华占 回交获得 BC₁F₁,种植 BC₁F₁材料,并从中随机挑选 20 个单株与黄华占杂交获得 BC₂F₁,采取相同方法 再连续回交 1 代获得 BC₃F₁,并种植 BC₃F₁植株,于 成熟期混合收获 BC₃F₂自交种子。分别从 BC₃F₁和 BC₃F₂群体中随机挑选出 6 个和 24 个单株进行取 样,并开展 SNP 分子标记分析。

1.2 水稻全基因组 SNP 芯片分析

采用 Qiagen DNA 提取试剂盒(DNeasy Plant Mini Kit,货号:69106)分别提取野生稻 Y605 和黄华占的基因组 DNA,具体步骤参照操作说明书。用于全基因组 SNP 芯片分析的 DNA 需要满足如下要求:(1)DNA 浓度 50~100 ng/µL;(2)DNA 的吸光度 OD 260/280 比值在 1.8~2.0,且琼脂糖检测时有一条清晰的条带。以上 DNA 样品送至深圳市作物分子设计育种研究院采用基于 Illumina Infinium HD Beadchip 技术的高通量 SNP 分型芯片进行芯片扫描分析,具体操作步骤参照 HiScan Infinium HD

Assay Ultra Protocol Guide (Catalog #WG-901- 4003 Part # 11322291 REV. C)。该 SNP 芯片是根据 420 份籼稻和170份粳稻的重测序数据,从中挑选出多 态性频率较高的 9000 个 SNP 位点,并基于 Illumina Infinium HD Beadchip 技术设计构建而成。

1.3 引物设计及信息

盛夏冰等^[17]研究发现扩增片段大小为68 bp 的引物最适合进行 HRM 分型分析。因此,本研究 HRM 检测体系的 PCR 扩增目的片段大小确定在 200 bp 以内。根据水稻全基因组9 K SNP 芯片在黄 华占与野生稻 Y605 之间的 4198 个多态性 SNP 位 点的序列比对结果,从水稻全基因组注释网站 RGAP(http://rice. plantbiology. msu. edu/)下载所 有 SNP 位点两端各 75 bp 的序列,然后通过在线引 物设计工具 Primer3 (http://bioinfo.ut. ee/primer3-0.4.0/primer3/)进行 HRM 引物设计。引物序列交 由深圳华大基因公司进行合成。

1.4 PCR 反应体系

PCR 反应采用 10 µL 体系,包含 10~20 ng 基 因组 DNA,1×PCR Buffer(Mg²⁺ plus),250 µmol/L dNTPs,0.1 μmol/L 正向和反向引物(表 2),0.5 U rTaq DNA 聚合酶(TaKaRa, Japan)以及 0.1 µL 20× EvaGreen 荧光染料(Biotium, USA),加 ddH2O 补足 至10 μL。为了防止反应混合液蒸发及污染,在 PCR 扩增前每个反应体系均需滴加 15~20 µL 矿物 油。PCR 扩增程序如下:94 ℃ 3 min:94 ℃ 30 s, 58 °C 30 s,72 °C 10 s,40 个循环;72 °C 1 min;95 °C 1 min;25 °C 1 min_o

1.5 HRM 分析

PCR 结束后,产物全部转移至白底黑框的96 孔 PCR 板。为了方便后续校正 96 孔板的孔间温 度差异,每个孔加入1 µL 温度内参(Internal Temperature Controls),2000 r/min 离心1 min 后即可进 行 Light Scanner 高分辨率熔解曲线采集及分析,根 据熔解曲线的变化形态来区分杂合体和双亲本的 基因型。

结果与分析 2

2.1 亲本 SNP 基因芯片分析

Call Rate 值是衡量 DNA 质量和芯片杂交效果 的一个重要指标,其数值与 DNA 质量和芯片杂交效 果呈正相关,可根据其数值对样品的芯片分型结果 进行质量控制。通过水稻全基因组9K SNP 芯片扫 描发现,两个亲本的 Call Rate 值分别为:黄华占为 0.98, 野生稻 Y605 为 0.97, 表明芯片杂交的方法能 够有效检测黄华占和野生稻 Y605 之间的 SNP 位 点。经过分析两亲本间检出的差异位点,发现总共 有 4198 个 SNP 位点呈现出多态性(表1),即水稻基 因组中平均每100 kb 就有1个多态性位点;其中1 号染色体的多态性位点最多,多达540个,而10号 染色体的多态性位点最少,为231个,且这些SNP 位点在每条染色体上的分布都比较均匀(图1),可 以满足后续对渗入系的分子标记跟踪要求;同时,芯 片结果也说明野生稻 Y605 与栽培稻黄华占之间遗 传差异较大,亲缘关系较远,可以通过构建野生稻渗 人系来有效提高栽培稻的遗传基础。

表 1 水稻全基因组 9 K SNP 芯片检测野生稻 Y605 与黄华占多态性 SNP 位点数目统计

Table 1 Number of polymorphic SNPs on each chromosome between wild rice Y605 and Huanghuazhan detected with genome-wide rice 9 K SNP microarray

染色体 Chr.	Chr. 1	Chr. 2	Chr. 3	Chr. 4	Chr. 5	Chr. 6	Chr. 7	Chr. 8	Chr. 9	Chr. 10	Chr. 11	Chr. 12
SNP 位点数目 Number of SNPs	540	425	442	377	292	380	374	333	251	231	290	263
引物对数 Number of primers	66	51	45	42	32	38	40	43	38	45	40	43

2.2 SNP 标记的开发及验证

根据黄华占和野生稻 Y605 之间的 SNP 位点分 布情况,在水稻12条染色体上平均1 Mb 左右的物 理距离较均匀地设计了523对HRM分型引物,具体 每条染色体的标记数见表 1, 扩增产物的长度 60~ 150 bp,标记所检测变异类型都是 A/T→G/C 的突 变,其中部分引物的相关信息见表2。

Chr.1	
-------	--

Chr.2

Chr.3

Chr.4

- Chr. 5
- Chr.6
- Chr. 7
- Chr.8
- Chr.9
- Chr.10
- Chr.11

Chr.12

图1 水稻全基因组9K SNP芯片检测野生稻 Y605 与黄华占每条染色体不同 SNP 位点数的分布

Fig. 1 Distribution of polymorphic SNPs on each chromosome between wild rice Y605 and Huanghuazhan detected with genome-wide rice 9 K SNP microarray

表 2 第 1 号染色体上的 15 对引物信息

Table 2 Information of 15 pairs of HRM-based primers on chromosome 1

引物	左引物序列	右引物序列	对应的基因	扩增产物长度(bp)	变异类型
Primers	Sequence of left primer	Sequence of right primer	Gene	Amplification length	Variation type
ZY1-1	CCACCGCCATCTAGTTTCTC	TGTGTCATTGGGCACAAAAT	Os01g0100554916	100	C/T
ZY1-2	TGAATAAACTCCCCGCAAAA	TGAGAAGAGTCTTTGCTTGCTG	Os01g0100693597	107	T/C
ZY1-3	TGGGGAATTCATTCCTTCCT	GAGGATTGGCGTCCGTGT	Os01g0101319621	65	G/A
ZY1-4	ATTTAGGGTGCGGGAGAAGT	TCCCCACTGCAGTAATTTCC	Os01g0102540457	104	C/T
ZY1-5	GCTCCTAACTGTGCAGAGCA	TGGTCCACGTCCCTTAATTC	Os01g0102713253	90	A/G
ZY1-6	GCCCATCAAGGCTTACATTT	TCGGACATATCGACTCTTTGC	Os01g0103420322	75	C/T
ZY1-7	GGCAAATGGATCACAACGAT	TGAGACGGATAGAGTATTAGGTTG	Os01g0103942033	88	G/T
ZY1-8	TGCTGATACGTCTGCTGCTT	GTTCAACTCCTTCGGCATGT	Os01g0104332310	91	T/C
ZY1-9	GCCAGACTTTCCTGGAAGC	ACCATTGCGGTTTTATGCTC	Os01g0105031072	111	A/C
ZY1-10	TTGTGGAGGAACCCAACTTC	CAAGTAAGTCGCATACAATGCTT	Os01g0105310628	84	T/C
ZY1-11	GGTCCACAAAAAGGGGGAAAT	TGTGATTCCCAGATGTGATGA	Os01g0105608993	80	G/A
ZY1-12	CGAGGACGAGGACACAGAAT	AACAGCTTCTCAATGCAGTCC	Os01g0106458394	92	T/C
ZY1-13	TGCCGAATTAATTACCAGTTG	ACAACCGGAGGCGTTTTAC	Os01g0107165205	90	T/C
ZY1-14	ATCATGGTCACGCTGGTTC	TGAAGCTTACGGAATTGTGC	Os01g0109702166	81	C/T
ZY1-15	TTGATGTTTCCAGAGCTCCA	GGAGAGGCGCTCCTCGAT	Os01g0109967137	83	A/G

用 ZY1-1~ZY1-5 共5 对引物(表 2)分别对黄华 占和野生稻 Y605 的基因组 DNA 进行扩增,利用 HRM 分型仪器 Light Scanner 对上述扩增产物进行基 因分型分析。同时,为了验证所设计引物 ZY1-1~ ZY1-5 的稳定性和可靠性,对图 2 中的扩增所用模板 设置了 2 个重复,将扩增的产物送深圳华大基因公司 进行测序。HRM 分型结果显示,所有引物的扩增产 物在两亲本之间都分别呈现了不同的熔解曲线(图 2A~E)。测序结果显示,两个亲本的 SNP 位点与 HRM 分型的结果完全一致(图 2F~J)。为了评价这 些 SNP 标记对 F₁植株的分型效果,选取 2 个黄华占 与野生稻 Y605 杂交 F₁单株,用以上的 5 对引物(表 2)进行 HRM 分型分析,所有引物对 F₁植株的扩增产 物都呈现了与两个亲本不一样的熔解曲线,即所设计 的引物可以很好地区分杂合体与纯合体(图 2K~O)。 引物 ZY1-6~ZY1-15 对黄华占和野生稻 Y605 的 HRM 分型和测序及两亲本的 F₁的 HRM 分型也都表现出了与图 2 相似的结果。以上结果很好地证明了基于 HRM

技术的 SNP 分子标记分析方法可以对两亲本及其相应 杂交后代植株进行准确的基因分型。

第1号染色体短臂上的5对引物 ZY1-1~ZY1-5 对野生稻 Y605、黄华占的 HRM 检测(A~E);两亲本间对应区段的测序验证(F~J);
两亲本杂交 F₁植株的 HRM 检测(K~O)。蓝色曲线代表野生稻 Y605 的高分辨率熔解峰,红色曲线代表黄华占的高分辨率熔解峰,灰色曲线代表 Y605/黄华占 F₁后代杂合型个体的高分辨率熔解峰(A~E,K~O);图上部为 Y605,图下部为黄华占(F~J)
HRM analysis of wild rice Y605, Huanghuazhan using the 5 selected pairs of primers ZY1-1-ZY1-5 on chromosome 1 short arm(A-E), sequencing validation of the polymorphisms between wild rice Y605 and Huanghuazhan amplified with the same 5 selected pairs (F-J), HRM analysis of the F₁ hybrids between wild rice Y605 and Huanghuazhan(K-O). The blue curves show the high resolution melting peaks of wild rice Y605, the red curves show the high resolution melting peaks of Huanghuazhan, and the grey curves show the high resolution melting peaks of the F₁ between wild rice Y605 and Huanghuazhan(A-E,K-O), The upper panel shows wild rice Y605, and the lower panel shows Huanghuazhan(F-J)

图 2 引物 ZY1-1~ZY1-5 对亲本的 HRM 检测

Fig. 2 Applications of primers ZY1-1-ZY1-5 in detection of parents with HRM

2.3 水稻野栽特异性分子标记的育种应用

随机对以黄华占为轮回亲本的野生稻 Y605 的渗入系的 BC₃F₁群体的 6 个植株进行挂牌取样, 然后用表 2 中的 SNP 标记对其进行 HRM 分型分 析。结果如图 3,植株 BC₃F₁-1、BC₃F₁-3、BC₃F₁-4 和 BC₃F₁-5 在 ZY1-1、ZY1-2、ZY1-3 和 ZY1-4 标记 位点都呈现为杂合状态,在 ZY1-5 标记位点为亲 本黄华占的带型,而植株 BC₃F₁-2 和 BC₃F₁-6 在所 有 5 个标记位点都为纯合的黄华占带型。其余 10 个标记对这 6 个植株的检测结果显示,它们都为 纯合的黄华占亲本的带型。收获 BC₃F₁-1 的种子, 种植在田间自交获得 BC₃F₂的分离群体,从中随机 挑选 24 个植株进行挂牌取样,并采用 ZY1-1 ~ ZY1-5 等 5 个标记对其进行 HRM 分型分析。如图 4 所示,24 个植株在 ZY1-1 ~ ZY1-4 都出现了随机 分离,而在 ZY1-5 标记位点都呈现为黄华占的纯 合基因型。这些结果说明,基于 HRM 技术的 SNP 分子标记可以很好地检测栽培稻中野生稻基因组 片段渗入情况,从而为野生稻优异基因的发掘提 供了技术工具。

引物 ZY1-1~ZY1-5 对野生稻 Y605、黄华占及其 BC₃F₁群体的 HRM 检测(A~E),引物 ZY1-1~ZY1-5 检测 BC₃F₁群体各个植株和两个亲本的基因型(F)。蓝色曲线代表野生稻 Y605 的高分辨率熔解峰,红色曲线代表黄华占的高分辨率熔解峰,

灰色曲线代表 Y605/黄华占后代杂合型个体的高分辨率熔解峰;7 为野生稻 Y605,8 为黄华占,9 为 Y605/黄华占的 F1个体

HRM analysis of wild rice Y605, Huanghuazhan and the BC₃F₁ population of them by the ZY1-1-ZY1-5 primer sets(A-E), Genotyping results of the BC₃F₁ population of wild rice Y605 and Huanghuazhan by ZY1-1-ZY1-5 primer sets. The blue curves show the high resolution melting peaks of wild rice Y605, the red curves show the high resolution melting peaks of Huanghuazhan, and the grey curves show the high resolution melting peaks of the heterozygous progeny between wild rice Y605 and Huanghuazhan, 7 is wild rice Y605, 8 is Huanghuazhan,

and 9 is the F1 generation generated by wild rice Y605 and Huanghuazhan

图 3 引物 ZY1-1~ZY1-5 对 BC₃F₁群体的 HRM 检测

- Fig. 3 Applications of primers ZY1-1-ZY1-5 in detection of BC₃F₁ population with HRM
- 3 讨论

前人研究表明,野生稻蕴藏的优异性状主要包括 抗病虫性、耐逆性和其他性状(如细胞质雄性不育和 优质)等^[18],科学家们已经利用这些资源培育出了一系列优良水稻品种(系)^[19-24]。然而,由于野生稻遗 传背景复杂,很多优良性状基因与不良性状连锁,严 重阻碍了其在现代水稻改良育种中的应用^[25-26]。 6期

引物 ZY1-1~ZY1-5 对野生稻 Y605、黄华占及其 BC₃F₂群体的 HRM 检测(A~E),引物 ZY1-1~ZY1-4 检测 BC₃F₂群体各个植株和两个 亲本的基因型(F),引物 ZY1-5 检测 BC₃F₂群体各个植株和两个亲本的基因型(G)。蓝色曲线代表野生稻 Y605 的高分辨率熔解峰, 红色曲线代表黄华占的高分辨率熔解峰,灰色曲线代表 Y605/黄华占后代杂合型个体的高分辨率熔解峰;25 为野生稻 Y605, 26 为黄华占,27 为 Y605/黄华占的 F₁个体

HRM analysis of wild rice Y605, Huanghuazhan and the BC₃F₂ population of them by the ZY1-1-ZY1-5 primer sets(A-E), Genotyping results of the BC₃F₂ population of wild rice Y605 and Huanghuazhan by ZY1-1-ZY1-4 primer sets(F), Genotyping results of the BC₃F₂ population of wild rice Y605 and Huanghuazhan by ZY1-5 primer set(G). The blue curves show the high resolution melting peaks of wild rice Y605, the red curves show the high resolution melting peaks of the heterozygous progeny between wild rice Y605 and Huanghuazhan, and the grey curves show the high resolution melting peaks of the heterozygous progeny between wild rice Y605 and Huanghuazhan, 25 is wild rice Y605, 26 is Huanghuazhan, and 27 is the F₁ generation generated by wild rice Y605 and Huanghuazhan **图 4 引物 ZY1-1 ~ ZY1-5 对 BC₃F, 群体的 HRM 检测**

Fig. 4 Applications of primers ZY1-1-ZY1-5 in detection of BC₃F₂ population with HRM

在传统育种过程中,育种家主要是凭借自己长期 的实践经验进行表型选择,由于受到各种环境条件的 影响,因此选择效率很低、准确性较差,导致育种周期 较长。尤其在野栽远缘杂交育种实践中,因为野生稻 复杂的遗传背景,杂种后代疯狂分离,表型选择难度 更大。借助先进的分子生物学技术,从基因组水平上 进行定向选择则可以大大提高育种效率和成功率。 分子标记辅助选择(MAS, Marker-assisted Selection) 是将分子标记技术与传统作物育种相结合,通过标记 选择有效减少连锁累赘,从而实现作物的快速改 良^[2731]。在野栽杂交育种过程中,通过使用分子标 记进行跟踪检测,并结合表型选择可以高效聚合多种 优良性状,快速淘汰不利基因的连锁累赘。其中,分 子标记为辨别杂种植株中的渗入染色体片段提供了 强有力的检测工具,已广泛在高代回交群体分析当中 应用。本研究以野生稻 Y605 为供体亲本,以常规优 质栽培稻黄华占为轮回受体亲本,通过进行后代随机 连续回交的方法构建覆盖野生稻全基因组的栽培稻 背景导入系,并开发基于 HRM 体系的 SNP 分子标记 对回交后代中的野生稻片段进行跟踪检测。在下一 步品种选育进程中,利用高密度的 SNP 标记就可以 准确检测外源基因组片段的导入情况,结合表型选择 就能够有效剔除不利基因,从而培育出综合性状优良的水稻新品种。

选择合适的标记类型是分子标记辅助选择能否 成功的关键。由于具备诸多优势特征,SNP标记正逐 渐成为当前植物分子育种中重要的标记选择工具。 在植物中,SNP密度高、分布数量多^[32-33],其中水稻 大约每268个碱基就有1个SNP.其分布频率远高于 InDel 和 SSR^[34-35]。Chen 等^[36]从 801 个水稻品种的 重测序结果的 1000 万个 SNPs 中挑选了 51478 位点 并将其开发成了基因芯片,其频率几乎可以达到每个 基因就有1个多态性SNP。然而,传统SNP芯片存在 着价格昂贵、灵活性差等缺点,从而限制了 SNP 标记 在育种中规模化应用。随着 HRM 技术的出现可以 很好地解决上述难题。作为检测 SNP 的一项新技 术,它具有分辨率高、操作简单、高效低成本等优 点^[37]。而且,该技术还能检测 InDel 和 SSR 类型的 变异,因此在植物分子育种中有着良好的应用前景。 鲁振华等^[38]采用高分辨率熔解曲线进行 SNP 的基因 分型,获得了与桃 Tssd 紧密连锁的 SNP 标记:罗文龙 等^[39]开发了基于 HRM 体系的功能标记 Wx-a/b 和 BADH2-E7,分别对调控水稻直链淀粉含量的基因 Wx 和香气形成的基因 fgr 很好地进行了基因分型;赵均 良等^[40]利用 HRM 分析了一个 G/A 转换的 SNP 标记 以及非变性聚丙烯酰胺凝胶电泳难以分辨的一个 SSR 标记和一个 InDel 标记的基因型,证明相对于传 统的凝胶电泳分析,HRM 具有无法比拟的优越性;金 名捺等^[41]针对水稻抗稻瘟病基因 Pi2 的功能区域开 发了基于 HRM 体系的标记分子 Pi2-HRMF1/R3,该 标记能很好地区分 Pi2 基因的各种功能变异及各种 变异的杂合类型。针对两系不育系的 tms5 基因的功 能区域,金名捺等^[42]开发了基于 HRM 体系的功能性 分子标记,可以用于 tms5 基因的资源鉴定和分子标 记辅助改良,从而为两系不育系的准确高效分子育种 提供技术支持。与此同时,近年还发展起来另一种 SNP 检测方法,竞争性等位基因特异性 PCR(Kompetitive Allele Specific PCR),简称 KASP 技术。该技术 可以对目标 SNPs 和 InDels 进行精准的双等位基因 分型。Feng 等^[43]利用 KASP SNP 标记开展了水稻抗 旱和耐低氮 QTL 定位和聚合育种,获得了多性状多 位点聚合的优良品系。但是 KASP 标记检测平台价 格昂贵,一般只有较大型的生物技术服务公司或实验 室公共平台才能承担,与其相比,HRM 标记的检测操 作相对更加简单灵活,检测平台的费用更加便宜,更 利于在生产实践中大规模应用。在本研究中,通过利

用水稻全基因组9K SNP芯片对野生稻Y605和常规 稻黄华占进行扫描分析,共获得4198个均匀分布于 各染色体上的 SNP 位点,从中随机挑选的15个 SNP 标记可有效区分亲本及其回交后代的基因型,跟踪轮 回亲本黄华占中渗入的野生稻染色体片段。结果说 明,利用高密度的水稻全基因组 SNP芯片结合 HRM 体系的分子标记方法,能够对栽培稻中野生稻片段进 行准确鉴定,从而为野生稻优异基因资源的开发利用 提供优良的分子工具。

参考文献

- [1] 鄂志国,王磊. 野生稻有利基因的发掘和利用. 遗传,2008,30 (11):1397-1405
- [2] 潘英华,陈成斌,梁世春,黄娟,徐志健,曾华忠,梁云涛.野生 稻优异基因挖掘及其在水稻育种中的利用研究进展.安徽农 业科学,2013,41(24):9908-9910
- [3] 张祥喜,罗林广.野生稻优异基因分子标记定位与利用研究进 展.生物技术通报,2002(6):1-4
- [4] 李书柯,江川,王金英.用 SSR 标记分析福建漳浦野生稻的遗 传多样性.植物遗传资源学报,2011,12(1):75-79,85
- [5] 梁新霞,郑晓明,刘莎,王君瑞,乔卫华,张丽芳,齐兰,公婷婷, 苏龙,丁鹰宾,许睿,程云连,高爱农,杨庆文.云南及周边普通 野生稻遗传多样性及其分布特征研究.植物遗传资源学报, 2017,18(3):390-395
- [6] 苏龙,徐志健,乔卫华.广西药用野生稻遗传多样性分析及 SSR 引物数量对遗传多样性结果的影响研究.植物遗传资源学报, 2017,18(4):603-610
- [7] Brondani C, Range P, Brondani R, Ferreira M. QTL mapping and introgression of yield-related traits from *Oryza glumaepatula* to cultivated rice(*Oryza sativa*) using microsatellite markers. Theoretical and Applied Genetics, 2002, 104(6-7):1192-1203
- [8] Rahman M L, Sang H C, Choi M S, Yong L Q, Wen Z J, Ri H P, Sakina K, Young I C, Jeung J U, Kshirod K J, Koh H J. Identification of QTLs for some agronomic traits in rice using an introgression line from *Oryza minuta*. Molecules and Cells, 2007, 24(1):16-26
- [9] 桑世飞,王会,梅德圣,刘佳,付丽,王军,汪文祥,胡琼.利用全 基因组 SNP 芯片分析油菜遗传距离与杂种优势的关系.中国 农业科学,2015,48(12):2469-2478
- [10] Gundry C N, Vandersteen J G, Reed G H, Pryor R J, Chen J, Wittwer C T. Amplicon melting analysis with labeled primers: A closedtube method for differentiating homozygotes and heterozygotes. Clinical Chemistry, 2003, 49(3): 396-406
- [11] Jeong H J, Jo Y D, Park S W, Kang B C. Identification of Capsicum species using SNP markers based on high resolution melting analysis. Genome, 2010, 53 (12) ;1029-1040
- [12] Han Y, Khu D M, Monteros M J. High-resolution melting analysis for SNP genotyping and mapping in *tetraploid alfalfa (Medicago sativa* L.). Molecular Breeding, 2012, 29:489-501
- [13] Botticella E, Sestili F, Hernandez-Lopez A, Phillips A, Lafiandra D. High resolution melting analysis for the detection of EMS induced mutations in wheat *Sbella* genes. BMC Plant Biology,2011, 11:156
- [14] Li J S, Wang X M, Dong R X, Yang Y, Zhou J, Yu C L, Cheng Y, Yan C Q, Chen J P. Evaluation of high-resolution melting for gene mapping in rice. Plant Molecular Biology Reporter, 2011, 29: 979-985
- [15] 朱岩芳,张炜,胡晋,朱丽伟,关亚静,王建成.高分辨率熔解曲 线分析(HRM)及其在植物种质资源鉴定中的应用.种子,2013 (10):57-60
- [16] 井赵斌,潘大建,曲延英,范芝兰,陈雨,陈建酉,陈芬,李晨.

AB-QTL分析法及在水稻优异基因资源发掘和利用中的应用. 分子植物育种,2008,6(4):637-644

- [17] 盛夏冰,谭炎宁,孙志忠,余东,刘瑞芬,袁定阳,段美娟.水稻 落粒性基因 qSHI 调控区关键 SNP 的 HRM 检测体系优化.分 子植物育种,2015,13(9):2083-2090
- [18] 金杰,李绍清,谢红卫,李能武,黄文超,胡骏,王坤,朱仁山,朱 英国.野生稻优良基因资源的发掘、种质创新及利用.武汉大 学学报:理学版,2013,59(1):10-16
- [19] 章琦,王春连,赵开军,杨文才,乔枫,周永力,江祺祥,刘古春. 携有抗白叶枯病新基因 Xa23 水稻近等基因系的构建及应用. 中国水稻科学,2002,16(3):206-210
- [20] 金旭炜,王春连,杨清,江祺祥,樊颖伦,刘古春,赵开军.水稻 抗白叶枯病近等基因系 CBB30 的培育及 Xa30(t)的初步定 位.中国农业科学,2007,40(6):1094-1100
- [21] 李容柏,李丽淑,韦素美,韦燕萍,陈英之,白德朗,杨朗,黄凤 宽,吕维莉,张向军,李小勇,杨新庆,魏源文.普通野生稻(Oryza rufipogon Griff.)抗稻褐飞虱新基因的鉴定与利用.分子植物 育种,2006,4(3):365-371
- [22] 秦前锦,李桂菊,宋发菊,徐晓燕.野生稻资源的特异性状与超 高产育种.湖北农业科学,2000(6);16-18
- [23] 郭嗣斌,张端品,林兴华.小粒野生稻抗白叶枯病新基因的鉴 定与初步定位.中国农业科学,2010,43(13);2611-2618
- [24] 井赵斌,潘大建,曲延英,范芝兰,陈雨,陈建酉,陈芬,李晨. AB-QTL 法定位广东高州野生稻谷粒外观性状和粒重基因.植物遗传资源学报,2009,10(2):175-181
- [25] 王金英,江川,李书柯.野生稻抗性基因的发掘、定位与利用研 究进展.福建稻麦科技,2012,30(3):82-89
- [26] 方宣均,吴为人,唐纪良.作物 DNA 标记辅助育种.北京:科学 出版社,2001:57-70
- [27] 冯建成. 分子标记辅助选择技术在水稻育种上的应用. 中国农 学通报,2006,22(2):43-47
- [28] 从春生,李永祥,李春辉,石云素,宋燕春,张登峰,黎裕,王天 宇.分子标记辅助选择玉米杂种后代创新种质方法研究.中国 农业科学,2016,49(20):3874-3885
- [29] 王春连, 戚华雄, 潘海军, 李进波, 樊颖伦, 章琦, 赵开军. 水稻 抗白叶枯病基因 Xa23 的 EST 标记及其在分子育种上的利用. 中国农业科学, 2005, 38(10): 1996-2001
- [30] Ribaut J M, Hoisington D. Marker-assisted selection: new tools and strategies. Trends in Plantsa, 1998, 3:236-239
- [31] 裴庆利,王春连,刘丕庆,王坚,赵开军.分子标记辅助选择在水稻抗病虫基因聚合上的应用.中国水稻科学,2011,25(2): 119-129

- [32] 郝岗平,杨清,吴忠义,曹鸣庆,黄丛林.植物的单核苷酸多态 性及其在作物遗传育种中的应用.植物学通报,2004,21(5): 618-624
- [33] 段世华,李绍清,李阳生,熊云,朱英国.水稻 CMS 相关基因在 稻属 AA 基因组中的分布及其单核苷酸多态性.遗传,2007,29 (4);455-461
- [34] Shen Y J, Jiang H, Jin J P, Zhang Z B, Xi B, He Y Y, Wang G, Wang C, Qian L, Li X, Yu Q B, Liu H J, Chen D H, Gao J H, Huang H, Shi T L, Yang Z N. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiology, 2004, 135 (3):1198-1205
- [35] Feltus F A, Wan J, Schulze S R, Estill J C, Jiang N, Paterson A H. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Research, 2004, 14(9):1812-1819
- [36] Chen H D,Xie W B,He H,Yu H H,Chen W,Li J,Yu R B,Yao Y,Zhang W H,He Y Q,Tang X Y,Zhou F S,Deng X W,Zhang Q F. A high-density SNP genotyping array for rice biology and molecular breeding. Mollecular Plant,2014,7(3);541-553
- [37] 王冬梅,李俊,杨红敏,石德顺,刘庆友.高分辨率熔解曲线 HRM 在 SNP 检测中的应用.基因组学与应用生物学,2015,34 (4):892-895
- [38] 鲁振华,牛良,张南南,崔国朝,潘磊,曾文芳,王志强.基于 HRM 获得与桃 Tssd 紧密连锁的 SNP 标记.中国农业科学, 2017,50(8):1505-1513
- [39] 罗文龙,郭涛,周丹华,陈海英,王慧,陈志强,刘永柱.利用基于 HRM 的功能标记分析水稻 Wx 和 fgr 的基因型. 湖南农业大学学报:自然科学版,2013,39(6):597-603
- [40] 赵均良,张少红,刘斌.应用高分辨率熔解曲线技术分析水稻 分子标记基因型.中国农业科学,2011,44(18);3701-3708
- [41] 金名捺,陈竹锋,丘式浚,陈慧,谢刚,李早霞,唐晓艳.基于 HRM体系的稻瘟病抗性基因 Pi2 功能性分子标记的开发及应 用.农业生物技术学报,2018,26(3):365-373
- [42] 金名捺,丘式浚,严维,谢刚,邓汉超,唐晓艳.水稻温敏雄性核 不育基因 *tms5* 功能分子标记的开发与应用.分子植物育种, 2018,16(3),19
- [43] Feng B, Chen K, Cui Y R, Wu Z C, Zheng T Q, Zhu Y J, Ali J, Wang B B, Xu J L, Zhang W Z, Li Z K. Genetic dissection and simultaneous improvement of drought and low nitrogen tolerances by designed QTL pyramiding in rice. Frontiers in Plant Science, 2018, 9:306