普通小麦祖先种类 TaNAC2a
基因的鉴定分析和表达模式研究

张风洁1,2, 李雪垠2,3, 高世庆2, 冯文成1, 刘婷婷1, 唐益苗2, 王昌平2, 王爱萍1

(1 山西农业大学农学院, 太谷 030801; 2 北京杂交小麦工程技术研究中心, 北京 100097; 3 西北农林科技大学农学院, 陕西杨陵 712100)

摘要: 采用生物信息学方法, 利用核酸、蛋白数据库对普通小麦祖先种乌拉尔图小麦(Triticum urartu L.) 和粗羊毛草(Aegilops tauschii L.) NAC 转录因子基因除进行分析, 分别鉴定出 107、126 个 NAC 蛋白家族成员。根据拟南芥、水稻 NAC 基因家族分类系统, 将其分为 15 个亚族。通过与拟南芥相关基因 TaNAC2a 进行同源进化树分析, 发现 5 个 TaNAC6 个 AetNAC 基因与其高度同源, 对这些基因的蛋白结构域、基因结构、启动子顺式作用元件和转录表达特性进行分析。结果表明, 11 个 NAC 蛋白具有典型的 NAC 结构域。进化关系较近的基因具有相似基因结构; 启动子区域特异序列发现其均含有逆境胁迫响应作用元件。实时荧光定量 PCR 结果显示, TaNAC, AetNAC 基因分别在乌拉尔图小麦和粗羊毛草根、胚芽鞘、叶片组织中均有表达, 并呈现出明显的组织表达特异性。通过芯片表达数据和逆境胁迫基因表达试验, 推测 AetNAC2c 基因可能参与植物干旱胁迫响应, AetNAC2b 可能与调控植物的耐旱、耐低温胁迫反应。以上分析结果为普通小麦祖先种基因家族的系统研究, 提供了选择功能基因的依据。

关键词: 乌拉尔图小麦; 粗羊毛草; NAC; 生物信息学; 表达特性

Bioinformatic Analysis and Expression Pattern of NAC Transcription Factor Genes Homologous to TaNAC2a in Bread Wheat Progenitors

ZHANG Feng-jie1,2, LI Xue-ying2,3, GAO Shi-qing3, FENG Bian-e1, LIU Ting-ting1, TANG Yi-miao3, ZHAO Chang-ping2, WANG Ai-ping3

(1 College of Agriculture, Shanxi Agricultural University, Taiyuan 030801; 2 Beijing Hybrid Wheat Engineering and Technology Research Center, Beijing 100097; 3 College of Agronomy, Northwest A&F University, Yangling Shaanxi 712100)

Abstract: In this study, 107 and 126 NAC transcription factor family members in Triticum urartu L. and Aegilops tauschii L. genome were identified respectively by HMM profile search. They were further classified into two groups, consisting of 15 subgroups based on the classification method of Arabidopsis and rice. Phylogenetic analysis revealed that 5 TaNAC genes and 6 AetNAC genes were found to be similar in protein sequence with TaNAC2a, which had been reported involved in the response to diverse stresses in plant. Phyletic evolution, protein domains, gene structure, cis-acting elements in the promoter region, and tissue-specific expression pattern of these 11 NAC genes were further analyzed. Results showed that these 11 NAC proteins possessed typical NAC domains and several pairs of genes with close evolutionary relationship had similar gene structure. Prediction of cis-acting elements revealed that they all had stress-responsive cis-acting elements in their promoter region. Gene expression pattern analysis revealed that the transcripts of TaNAC and AetNAC genes were detected in root, coleoptile and leaf of Triticum urartu and Aegilops tauschii, respectively, and exhibited obvious tissue-specific expression pattern. It was speculated...
from microarray data and expression pattern under stress conditions that AetNAC2c had a role in the response to drought stress and AetNAC2b was more likely to be involved in the regulation of plant reaction to low temperature and drought stress. Our analysis would lay a foundation for systematical research of gene family in bread wheat progenitors and provide an analytical basis for the identification of excellent functional genes.

Key words: Triticeum urartu; Aegilops tauschii; NAC; bioinformatics; expression characteristics

唐兰等[27]从普通小麦 (Triticum aestivum L.) 中分离鉴定了 6 个 TaNAC基因 (TaNAC2a, TaNAC2c, TaNAC5, TaNAC7, TaNAC13, TaNLT5), 并对TaNAC2a进行转转录过表达研究, 结果表明在干旱条件下, 转基因植株较野生型植株具有更高的干重及鲜重, 说明 TaNAC2a 基因具有提高烟草抗旱性的功能。研究表明, 乌拉尔图小麦和粗山羊草分别是普通小麦 A 亚种体组和 D 亚种体组的祖先[18-19]。大量研究表明[18-20], 遗传差异必须在长期驯化培育过程中, 基因型种类减少, 基因多样性逐渐丧失, 这是普通小麦改良与品种选择的重要瓶颈。而普通小麦 A, D 基因组具有高度多样性的基因在小麦 A, D 基因组测序的完成成为普通小麦的品种改良和基因挖掘奠定了基础。本研究鉴定了乌拉尔图小麦和粗山羊草所有的 NAC家族成员, 并分别构建本地 BLAST 数据库 NAC_A 和 NAC_D。以 TaNAC2a 为查询序列, 在 NAC_A 和 NAC_D 中执行本地 BLAST, 对其中部分相似序列进行多序列比对, 以进化树, 基因结构分析, 启动子顺式作用元件预测及表达分析, 提供抗逆转基因分子育种提供优异基因资源, 同也为普通小麦祖先种基因家族功能深入研究提供试验依据。

1 材料与方法

1.1 试验材料与处理

普通小麦祖先种基因组数据来自乌拉尔图小麦 (Tu.) 和粗山羊草 (Aet.) 的测序结果 (http://gigadb.org/dataset/10005 和 http://gigadb.org/dataset/100054)。NAC基因 GenBank 为 HM027578.1。普通小麦祖先种乌拉尔图小麦(材料编号 UR202)和粗山羊草 (材料编号 Y2822)由中国农业科学院作物所贾继增研究员课题组提供。以培养 14 d 的盆栽幼苗作为试验样本, 每个材料设置 3 个生物学重复, 分别取其叶片及根组织用于组织表达特异性试验。然后对正常培养 14 d 的粗山羊草幼苗进行 15%PEG6000 模拟干旱处理, 处理前 (0 h) 及处理后 1 h, 2 h, 5 h, 10 h 和 24 h 分别取幼苗叶片; 同时 4 ℃ 培养幼苗模拟低温处理, 处理前 (0 h) 及处理后 1 h, 2 h, 5 h, 12 h 和 24 h 分别取幼苗叶片, 取材均以液氮速冻后于 −80 ℃ 保存, 用于基因表达的实时定量 PCR 分析。

1.2 乌拉尔图小麦和粗山羊草基因组中 NAC家族基因鉴定

从 PROSITE 网站上 NAC 保守域信息 (PD051005) 中下载 NAC家族成员保守域的比对文件, 利用 HMMER 软件包中的 hmmbuild 程序生成 NAC 保守域的 HMM 文件 NAC.hmm。分别以乌拉尔图小麦和粗山羊草所有蛋白序列为数据库, 利用 hmmssearch 程序搜索 2 个普通小麦祖先种基因组中 NAC 家族成员, E-value 值设为 1。通过 MEME 在线工具 (http://meme.nbcr.net/meme/cgi-bin/meme.cgi) 进行蛋白结构域分析, 鉴定具有典型 NAC 结构域的蛋白序列。

1.3 同源基因鉴定、多序列比对及系统进化树构建

分别利用乌拉尔图小麦和粗山羊草 NAC家族蛋白序列构建本地 BLAST 数据库 NAC_A 和 NAC_D, 以已经得到功能验证的 TaNAC2a 蛋白序列为查询序列, 分别在 NAC_A 和 NAC_D 中执行本地 BLAST(E-
value = e^{-45})，搜索相似序列。通过 Perl 语言程序删除冗余序列，并在 NAC _A_ 和 NAC _D_ 中分别获得与 TaNAC2a 相似的 NAC 家族候选成员。

将搜索得到的 NAC 家族候选研究成员与 TaNAC2a 蛋白序列通过 Clustal X2 程序进行多序列比对分析，进而利用 MEGA5（http://megasoftware.net/）程序中的 Neighbor-Joining 方法构建系统进化树，校验参数 Bootstrap 值设置为 100。

1.4 内含子 - 外显子结构及启动子分析

1.5 基因表达模式预测分析

将 11 个普通小麦祖先种 NAC 基因通过 PLEXdb 在线工具（http://www. plexdb. org/modules/tools/plexdb_blast. php）进行 BLAST 搜索比对，基于 wheat61K 芯片平台的试验数据，针对 2 个和普通

小麦祖先种 NAC 基因匹配度极高（比对区域覆盖达 95% 以上，相似度达 95% 以上）的探针，选取与低温及干旱处理相关的 4 组试验（实验样本的品种及处理情况见图注），下载其 RNA meandi-an 芯片数据用于表达模式分析。利用 Cluster 3.0 软件对基因表达模式数据进行聚类分析，并利用 TreeView 程序显示聚类结果，进行基因诱导表达情况分析。

1.6 RNA 提取和荧光定量检测

采用 Triazol 试剂（Ambion, USA）分别提取乌拉尔图小麦及粗山羊草根、胚芽胚、叶片组织的总 RNA。纯化后的 RNA 按照 Takara 反转录试剂盒 PrimerScript™ RT reagent Kit (with gDNA Eraser) 说明书进行反转录。采用 Takara 荧光定量试剂盒 SYBR® Premix Ex Taq™ (Tli RNaseH Plus) 和 Illumina Eco System 荧光定量 PCR 仪进行实时荧光检测。Actin (LOC542814) 为内参基因，扩增引物为：Actin-F：5’-CTCCCTACAA-CAACCCG-3’ 和 Actin-R：5’-TACCGGAAGACTCAT-ACCAAC-3’。荧光定量引物采用 Primer Premier 5.0 设计，由上海生工公司北京总分司合成。引物设计的方法是，利用在线工具 NCBI CDD（http://www. ncbi. nlm. nih. gov/Structure/cdd/wrpsb. cgi）查找基因的保守域，为避免非特异扩增，在保守域以外区域设计引物（表 1）。荧光定量试验前，先利用引物在 cDNA 模板中进行扩增，进而电泳验证扩增产物是否单一。荧光定量 PCR 扩增程序：95 °C 预变性 30 s，1 个循环，95 °C 5 s, 55 °C 30 s, 30 个循环。基因拷贝数采用 C_{r} 值法进行计算，目的基因表达量的统计方法采用相对定量法（2^{-ΔΔC_{r}}）[22]。

表 1 实时荧光定量 PCR 引物序列

<table>
<thead>
<tr>
<th>基因名称</th>
<th>引物序列（5’ - 3’）</th>
<th>引物序列（5’ - 3’）</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaNAC2a-F</td>
<td>CCGCAGAAGAACACGCGT</td>
<td>ActNAC2b-F</td>
</tr>
<tr>
<td>TaNAC2a-R</td>
<td>CCGGCGTTGGCCCTAC</td>
<td>ActNAC2b-R</td>
</tr>
<tr>
<td>TaNAC2b-F</td>
<td>CCGGCAATACCGGACAGC</td>
<td>ActNAC2b-R</td>
</tr>
<tr>
<td>TaNAC2b-R</td>
<td>CCGCAGAAGAACACGCGT</td>
<td>ActNAC2c-F</td>
</tr>
<tr>
<td>TaNAC2c-F</td>
<td>GCTGGAGAATGCGCTCGT</td>
<td>ActNAC2d-F</td>
</tr>
<tr>
<td>TaNAC2c-R</td>
<td>AGGAGCTCGCTCCGAGG</td>
<td>ActNAC2e-F</td>
</tr>
<tr>
<td>TaNAC2d-F</td>
<td>AAAAGCGCTGGACAGCGG</td>
<td>ActNAC2e-R</td>
</tr>
<tr>
<td>TaNAC2d-R</td>
<td>GCGTGGCGGGACTCGGACT</td>
<td>ActNAC2f-F</td>
</tr>
<tr>
<td>TaNAC2e-F</td>
<td>ATGATAAACGGCAAGAAC</td>
<td>ActNAC2f-R</td>
</tr>
<tr>
<td>TaNAC2e-R</td>
<td>CAGCGTCGAGACTCGGACT</td>
<td>ActNAC2f-F</td>
</tr>
<tr>
<td>ActNAC2a-F</td>
<td>GCGTCGAGACTCGGACT</td>
<td>ActNAC2f-R</td>
</tr>
<tr>
<td>ActNAC2a-R</td>
<td>GCGTGGCGGGACTCGGACT</td>
<td></td>
</tr>
</tbody>
</table>
2 结果与分析

2.1 乌拉尔图小麦和粗山羊草基因组中 NAC 家族基因鉴定

将 hnmseach 程序搜索结果通过 MEME 在线工具进行蛋白结构域分析，在乌拉尔图小麦和粗山羊草基因组中分别鉴定出 107,126 个 NAC 家族成员。为评估 2 个祖先种和拟南芥 NAC 基因的进化关联，对乌拉尔图小麦、粗山羊草和拟南芥 NAC 家族基因编码的氨基酸序列构建系统发育树（图 1），根据 H. Ooka 等[21]关于拟南芥和水稻 NAC 家族基因分类系统将乌拉尔图小麦和粗山羊草 NAC 成员分为 Group1 和 Group2 两大类，观察本试验系统进化学发现 Group2 包括 3 个分支。通过对其 boot-strap 值进行研究，可将 Group1 分为 12 个不同亚类，分别 为：TIP、OsNAC8、ATAF、AtNAC3、NAP、ONAC022、OsNAC7、NAC1、NAM、ANAC011、NAC2、SENU5，其中 NAC2 亚家族被 SENU5 分开；Group2 可分为 3 个不同亚类，分别为：ANAC001、ANAC063、ONAC003。 I、Ⅱ、Ⅲ成员不属于任何亚族。亚族 ANAC001、TIP、AtNAC3、SENU5 只含有拟南芥 NAC 家族成员，其余亚家族均同时包含乌拉尔图小麦、粗山羊草和拟南芥 NAC 蛋白。

图 1 乌拉尔图、粗山羊草和拟南芥 NAC 基因家族蛋白系统发育树

Fig. 1 Neighbor-joining phylogenetic tree of the NAC members in *Triticum urartu*, *Aegilops tauschii*, and *Arabidopsis thaliana*.
2.2 同源基因的鉴定、多序列比对及系统进化树构建

通过本地 BLAST 操作（E-value = e^{-45}），在 NAC_A 和 NAC_D 中共搜索得到 68 个与 TaNAC2a 相似的基因，其中 NAC_A 基因组 32 个，NAC_D 基因组 36 个，将其作为候选研究对象，并与 TaNAC2a 蛋白序列进行多序列比对及系统进化分析（图 2）。结果显示，进化树主要分成两大类，分别含有 13 个和 57 个 NAC 成员，其中 11 个 NAC 蛋白（圆括号标记）和 TaNAC2a（正方形标记）位于同一支，亲缘关系较近，分别属于 ATAF 亚族和 NAP 亚族。序列比对发现 11 条序列和 TaNAC2a 序列相似度均达到 50% 以上（表 2），将其作为重点基因进行研究分析。

根据乌拉尔图小麦 5 个基因的染色体定位信息（1A-3A）及基因编组顺序，分别命名为：TuNAC2a、TuNAC2b、TuNAC2c、TuNAC2d 和 TuNAC2e；同理，将粗山羊草 6 个基因分别命名为：AetNAC2a、AetNAC2b、AetNAC2c、AetNAC2d、AetNAC2e 和 AetNAC2f（表 2）。蛋白质生化属性分析发现 11 个 NAC 家族成员中蛋白最长的有 568 个氨基酸，最短的仅有 228 个氨基酸，等点点范围从 5.24（TuNAC2e）到 9.80（AetNAC2d）。除 TuNAC2d 外，其他 10 个基因的 NAC 保守域均处于序列的前段位置。

![图 2 普通小麦祖先种 68 个 NAC 家族成员与 TaNAC2a 蛋白的系统发育树](image)

图 2 Neighbor-joining phylogenetic tree of TaNAC2a and 68 wheat progenitor NAC proteins

表 2 TaNAC2a 近缘的 11 个普通小麦祖先种 NAC 基因的基本信息

<table>
<thead>
<tr>
<th>基因名称</th>
<th>祖先基因</th>
<th>染色体位置</th>
<th>编码序列</th>
<th>氨基酸数目</th>
<th>保守域位置</th>
<th>等点电位</th>
<th>分子量 (kDa)</th>
<th>比对区域 (%)</th>
<th>相似度 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaNAC2a</td>
<td>TRIU3_32750</td>
<td>1AL3-0.61-1.00</td>
<td>1083</td>
<td>360</td>
<td>20-147</td>
<td>9.50</td>
<td>39.97</td>
<td>48</td>
<td>56</td>
</tr>
<tr>
<td>TaNAC2b</td>
<td>TRIU3_29857</td>
<td>C-2AL3-0.85</td>
<td>1707</td>
<td>568</td>
<td>80-241</td>
<td>6.75</td>
<td>62.25</td>
<td>52</td>
<td>61</td>
</tr>
<tr>
<td>TaNAC2c</td>
<td>TRIU3_04332</td>
<td>3AL3-0.42-0.78</td>
<td>783</td>
<td>260</td>
<td>28-154</td>
<td>5.24</td>
<td>29.02</td>
<td>87</td>
<td>50</td>
</tr>
<tr>
<td>TaNAC2d</td>
<td>TRIU3_14109</td>
<td>-</td>
<td>711</td>
<td>236</td>
<td>76-231</td>
<td>9.54</td>
<td>26.46</td>
<td>57</td>
<td>99</td>
</tr>
<tr>
<td>TaNAC2e</td>
<td>TRIU3_32458</td>
<td>-</td>
<td>1104</td>
<td>367</td>
<td>14-171</td>
<td>9.09</td>
<td>40.14</td>
<td>52</td>
<td>61</td>
</tr>
<tr>
<td>AetNAC2a</td>
<td>AEGTA04075</td>
<td>2D</td>
<td>1044</td>
<td>347</td>
<td>11-173</td>
<td>7.24</td>
<td>37.78</td>
<td>48</td>
<td>61</td>
</tr>
<tr>
<td>AetNAC2b</td>
<td>AEGTA12286</td>
<td>3D</td>
<td>903</td>
<td>300</td>
<td>28-170</td>
<td>5.81</td>
<td>33.44</td>
<td>87</td>
<td>53</td>
</tr>
<tr>
<td>AetNAC2c</td>
<td>AEGTA07634</td>
<td>5D</td>
<td>990</td>
<td>329</td>
<td>19-172</td>
<td>6.38</td>
<td>36.74</td>
<td>100</td>
<td>97</td>
</tr>
<tr>
<td>AetNAC2d</td>
<td>AEGTA02308</td>
<td>-</td>
<td>687</td>
<td>228</td>
<td>2-148</td>
<td>9.80</td>
<td>25.07</td>
<td>39</td>
<td>70</td>
</tr>
<tr>
<td>AetNAC2e</td>
<td>AEGTA02328</td>
<td>-</td>
<td>1077</td>
<td>358</td>
<td>11-178</td>
<td>6.12</td>
<td>38.15</td>
<td>50</td>
<td>58</td>
</tr>
</tbody>
</table>

2.3 TuNAC, AetNAC 蛋白 NAC 结构域序列比对

将与 TaNAC2a 近缘的 NAC 蛋白序列进行多重序列比对，结果显示 11 个祖先种 NAC 蛋白在氨基酸序列 N 端保守性较强，其结构域由大约 130 个高度保守的氨基酸残基组成，如图 3 所示，可进一步划分为 A, B, C, D, E 5 个亚结构域，共同组成了 NAC 保守域，具有典型的 NAC 转录因子结构特征。其中 D 亚域的保守性最强，其次是...
2.4 TuNAC, AetNAC 基因的内含子—外显子结构

将 NAC 基因编码区序列与基因全长序列进行比较，利用 GSDS 分析普通小麦祖先种 NAC 基因的结构特征（图 4）。结果表明，TuNAC、AetNAC 中超过半数的基因有 3 个内含子，其余 NAC 基因含有内含子的数目变异较大。TuNAC2b 的内含子为 9 个，TuNAC2a 的内含子数目为 5 个，AetNAC2c 含有 1 个内含子。说明 AetNAC2c 产生或分化的较晚，功能更为特化。其中 TuNAC2a、TuNAC2c、AetNAC2c、AetNAC2b、TuNAC2d 和 AetNAC2f 属于 ATAF 亚族，TuNAC2b、TuNAC2e、AetNAC2a、AetNAC2d、AetNAC2e 属于 NAP 亚族。本研究发现 TuNAC2e、AetNAC2d 由 3 个外显子和 2 个内含子组成，这与前人关于 NAP 亚家族基因结构特征的研究相符。AetNAC2a、AetNAC2e、TuNAC2b 则分化出碱基数较少的外显子。同时发现亲缘关系较近的基因具有相似的内含子—外显子结构，表现在外显子数目和长度较为相似，如 TuNAC2d 和 AetNAC2f，TuNAC2c 和 AetNAC2b，TuNAC2e 和 AetNAC2a，说明祖先 NAC 基因的内含子—外显子结构可能与系统发生关系紧密相关。

分析发现 11 个基因内含子占核酸碱的比例变化范围较大，AetNAC2c 内含子所占比例最小，为 11.4%；有 6 个基因的内含子比例超过 50%，其中 TuNAC2d、TuNAC2b 内含子比例分别为 93.0%、94.6%。真核生物基因的外显子、内含子剪切位点具有保守性，遵循 GT-AG 法则，以确保 RNA 转录之后的加工过程内含子能被准确的识别与切除。分析发现 11 个 TuNAC、AetNAC 基因包含的 37 个内含子全部符合 GT-AG 剪接规则。
2.5 TuNAC、ActNAC 基因的启动子顺式作用元件

为探讨11个TuNAC、ActNAC基因的功能，利用PlantCARE预测启动子中响应逆境诱导的顺式作用元件，选择与普通小麦亲缘关系较近的物种及模式植物作为参考，如大麦、拟南芥、玉米、水稻、燕麦、二穗短柄草等。结果发现，TuNAC、ActNAC基因不仅含有多个CAAT-box及TATA-box启动子区域基本元件，同时存在ABRE、MBS、LTR等多种逆境诱导相关的顺式作用元件。从表3可看出，11个NAC基因均含有ABRE作用元件，10个NAC基因均含有多个CBAT-box，TATA-box元件，8个NAC基因含有MBS及LTR作用元件，5个NAC基因含有CCAAT-box（MYB-Hv1结合位点），TuNAC2b含有逆境胁迫响应元件(TC-rich repeats)。其中ABRE是参与脱落酸响应途径的顺式作用元件，MBS是MYB转录因子结合位点，能够参与干旱调控，LTR作用元件与低温响应的表达调控相关，A-box及OBP-1 site为顺式调控元件。间接说明普通小麦祖先种NAC家族蛋白与植物逆境胁迫应答之间存在一定关联性。

表3 TuNAC2a近缘普通小麦祖先种NAC家族基因启动子中作用元件的数量分布

<table>
<thead>
<tr>
<th>基因名称</th>
<th>A-box</th>
<th>CAAT-box</th>
<th>CCAAT-box</th>
<th>TATA-box</th>
<th>TC-rich repeats</th>
<th>ABRE</th>
<th>MBS</th>
<th>LTR</th>
<th>CE1</th>
<th>OBP-1 site</th>
<th>CE3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TuNAC2a</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TuNAC2b</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TuNAC2c</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TuNAC2d</td>
<td>0</td>
<td>12</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TuNAC2e</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ActNAC2a</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ActNAC2b</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ActNAC2c</td>
<td>0</td>
<td>13</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ActNAC2d</td>
<td>0</td>
<td>17</td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ActNAC2e</td>
<td>0</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ActNAC2f</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>12</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
2.6 NAC 基因逆境响应表达模式预测与分析

将 11 个祖先种 NAC 基因通过 PLEXDB 基因芯片平台搜索比对，鉴定出极为匹配的基因探针，通过分析相似基因的逆境响应表达情况，推测祖先种 NAC 基因的表达模式。结果发现 2 个基因找到对应探针，分别为 ActNAC2b (Ta. 9497. 1. SI_at)、ActNAC2c (Ta. 5367. 1. SI_s_at)，下载得到相关的 4 组试验数据进行分析，研究其在干旱、低温条件下诱导入表达水平 (图 5)。

结果显示：2 个基因在低温及干旱处理下，表达量存在很大差异，说明其基因的表达受逆境胁迫诱导。A 试验结果表明：在 4 个品种中，低温处理不同时间 Ta. 9497. 1. SI_at 的表达量明显不同，但整体呈上升趋势，在品种 85_Ma, No 中表现尤为明显，说明在 4 个品种中 Ta. 9497. 1. SI_at 的表达量均受低温诱导，呈上升趋势。Ta. 5367. 1. SI_s_at 的表达量受低温响应整体呈下降趋势。B, C, D 试验结果表明：Ta. 9497. 1. SI_at 受干旱响应其表达量整体下降，在易感品种 WL711 中表达量不变，在 CS, CS-SA 品种重度胁迫处理时表现出略微的上升趋势。Ta. 5367. 1. SI_s_at 在干旱胁迫处理下表达量整体呈上升趋势，在试验 B, C 中表现明显；在 D 试验 Creso, CS 品种中表达较为复杂，表现出随干旱胁迫的加剧，表达量均上升再降低的趋势。总之，Ta. 9497. 1. SI_at 的表达量在低温诱导下整体呈上升趋势，干旱诱导下受到抑制；Ta. 5367. 1. SI_s_at 则相反，受低温诱导表达量降低，干旱诱导下表达量上调。

A: 4 个耐低温品种在低温处理不同时间条件下基因表达情况，4 个品种分别为 Winter Manitou (12W), Spring Northstar (85), Spring Manitou (Ma), Winter Northstar (No); 处理时间为 0, 2, 4, 12, 21, 35, 42, 56, 70 天。B: 4 个普通小麦品种在生长发育阶段灌溉和干旱条件下筛选的基因表达情况，4 个品种分别为易感品种 WL711, 易感品种 RIL, 耐旱品种 C306, 耐旱品种 RIL。图中分别简写为 WL711, RIL, C306, RIL (GEO 登录号：GSE30436); C: 正常浇水和干旱处理条件下 2 个耐旱小麦品种的基因表达情况。2 个品种分别为耐旱 Y12-3, 易感 A24-39, 图中分别简写为 Y12-3, A24-39 (GEO 登录号：GSE31762); D: 3 个普通小麦品种耐旱期在水分正常、中度胁迫、重度胁迫处理条件下的基因表达情况。3 个品种分别为 Creso, Chinese Spring, CS-SA-10, 图中分别简写为 Creso, CS, CS-SA (GEO 登录号：GSE31759)

A: Experiment name is transcription profiling and expression analyses of genes critical to wheat adaptation to low temperature, Genotype includes Winter Manitou (12W), Winter Manitou (12W), Spring Manitou (Ma), Winter Northstar (No), Treatment time is 0 days, 2 days, 4 days, 12 days, 21 days, 35 days, 42 days, 56 days, and 70 days (GEO Accession: GSE23889); B: Experiment name is transcription profiling of reproductive stage flag leaves of wheat from drought susceptible parent WL711, drought tolerant parent C306 and drought tolerant RIL bulks in irrigated and drought and condition, Cultivar includes WL711 susceptible, RIL susceptible, C306 tolerant, and RIL tolerant, Stress condition includes irrigated and drought (GEO Accession: GSE30436). C: Experiment name is wild emmer wheat comparison of drought resistant vs. susceptible genotypes under terminal drought, Genotype includes Drought resistant (R) Y12-3 and Drought susceptible (S) A24-39, Treatment time is well-watered terminal drought (GEO Accession: GSE31762). D: Experiment name is drought stress in wheat at grain filling stage, Genotype includes Creso, CS and CS-SA, Stress condition includes Control, mild stress, and severe stress (GEO Accession: GSE31759)

图 5 2 个普通小麦基因在逆境条件下的表达模式

Fig. 5 The expression profile of two wheat genes under stress conditions
2.7 TuNAC、AetNAC 基因的组织表达特性分析

为探索 TuNAC2a 近缘 NAC 基因在普通小麦祖先种中的组织表达特性，提取乌拉尔图和粗山羊草幼苗根、胚芽鞘、叶组织总 RNA 并进行反转录，以基因特异性引物进行荧光定量试验。基因表达量的统计方法采用相对定量法，图 6(A)、(B) 分别以 TuNAC2d 在 T. urartu 根、AetNAC2a 在 Ae. tauschii 根部的表达量作为参照标准(表达量设定为 1)，其余柱高表示与其的倍数关系。从图 6(A) 可看出，TuNAC 基因在 T. urartu 中呈现一定的组织表达特异性，除 TuNAC2b 外，其他基因在叶部的表达量最低，其中 TuNAC2a 在根部表达量达到参照的 314.65 倍。TuNAC 基因在根部的表达量普遍较低。图 6(B) 表明，AetNAC 在 Ae. tauschii 中有明显的组织表达特异性，6 个基因在叶组织的表达量均高于在根、胚芽鞘的表达量。除 AetNAC2a 外，AetNAC 在根中的表达量最低。AetNAC2b、AetNAC2d、AetNAC2f 在胚芽鞘的表达量相对较高，分别达到参照的 14.25、6.06、8.63 倍。AetNAC2b 在根部的表达量和其他基因相比最高，为参照的 4.08 倍。从整体趋势来看，TuNAC、AetNAC 基因在叶部组织表达量均较高，说明 NAC 基因的表达可能与普通小麦祖先种幼苗期叶片发育相关。

2.8 逆境条件下 AetNAC2b、AetNAC2c 基因在叶组织的表达分析

由芯片结果，启动子元件，Y. M. Tang 等推测 AetNAC2c 基因可能参与植物干旱胁迫响应，AetNAC2b 基因可能参与调控植物的抗旱、抗低温反应。通过荧光 PCR 检测 AetNAC2c 基因在干旱处理后叶片样本中的表达，以及 AetNAC2b 基因在低温、干旱处理叶片中的表达。结果表明(图 7): AetNAC2c 基因在干旱处理时表达量明显比对照组高，在处理 24 h 时达最高。AetNAC2b 基因在低温处理时表达量比对照组高，在处理 24 h 时变化尤为明显，达到对照组表达量的 67.97 倍; 不同干旱处理时间下，AetNAC2b 基因的表达量变化较大，在处理 5 h 时表达量最高，处理 24 h 时表达量最低。

图 6 TuNAC(A)、AetNAC(B) 基因分别在乌拉尔图和粗山羊草根、胚芽鞘、叶组织的相对表达量

Fig. 6 Relative expression of TuNAC(A) and AetNAC(B) genes in root, coleoptile, and leaf of T. urartu and Ae. tauschii, respectively

图 7 AetNAC2c、AetNAC2b 基因在干旱处理叶片中的表达以及 AetNAC2b 基因在低温处理叶片中的表达

Fig. 7 Relative expression of AetNAC2c and AetNAC2b gene under drought treatment and AetNAC2b gene under cold treatment in leaf
3 讨论

本研究鉴定小麦 A、D 染色体组祖先种乌拉尔图和粗山羊草 NAC 成员，分别为 107,126 个，且在每个亚族中分布均匀，说明普通小麦祖先种 NAC 家族具有保守性，相似度较高。这与乌拉尔图小麦和粗山羊草在进化上属于亲缘物种的研究结果相符[20]。尽管拟南芥 NAC 家族成员数量相差不大，但通过与拟南芥家族成员进行聚类分析，发现有 4 个亚族（ANAC001, TIP, ANAC3, SENU5）只存在于拟南芥中，而在水稻中不含有 TIP 亚族，观察发现其余 3 个亚族成员数量相对较少，且基因家族扩大在一定程度上是由于基因成熟，说明 ANAC001、ANAC3、SENU5 三个亚族出现时间较晚，很可能发生在单子叶植物分化以后。2 个普通小麦祖先种其亚族分类情况和拟南芥相似，表明 NAC 家族蛋白在拟南芥与普通小麦祖先种之间既存在差异又有较高的保守性，这与葡萄[25]、棕榈[26]、NAC 家族研究结果一致。

Y. J. Hao 等[27] 研究大豆 GmNACs 时发现在 NAC 保守区的 D 亚域有一段由 35 个氨基酸组成的转录抑制域，并命名为 NARD（NAC Repression Domain），不仅能够抑制 NAC 蛋白的转录活性，还能抑制一些转录因子基因的转录激活，如 Dof、AP2/ERF。研究认为，NARD 类序列大多包含 38 个残基组成的序列：G-X-G（2）-K-X（1）-L-V-F-Y-X（1）-G-C-G-X（2）-P-X（1）-G-X（1）-K-X（2）-W-X（1）-H-E-Y-R-L 和 12 个保守的氨基酸：GKLVFPWMHYER[27]。本研究也发现 11 个 TaNAC 和 AtnAC 转录因子在 D 亚域中包含类似序列：K-X（2）-P-X（1）-G-X（1）-K-T-X（1）-W-I-M-H-E-Y-R-和基序 KKLVFY 和 WMIHYER 高度保守。Y. J. Hao 等[27] 通过序列突变试验推测，NARD 的抑制功能与其包含的 LVFY 基序紧密相关，由此推测 TaNAC、AtnAC 转录因子 D 亚域中包含转录抑制域。本研究中将符合比对总长度占较长时间 80% 以上，且比对序列相似性达 80% 以上的 2 条条形序列称为直系同源基因[21]。经比对发现 TaNAC2b 和 AtnAC2、AtnAC2c、TaNAC2c、AtnAC2a 和 TaNAC2e 均为直系同源基因对。突光定量结果显示直系同源基因 TaNAC2b 和 AtnAC2d 的组织表达特异性趋势不同，TaNAC2b 在胚芽鞘表达最多，AtnAC2d 在叶部表达最多，说明基因的功能产生了分化。AtnAC2b 和 TaNAC2c、TaNAC2e 和 AtnAC2a 不仅受直系同源基因，且内含子 - 外显子结构较为相似，组织特异性表达趋势一致，推测其具有相似的功能。直系同源基因的产生可能是片段重复的结果。重复是基因进化的重要因素，基因重复后可能会丢失功能、分化出新功能或互补的功能[28]。

研究表明，许多抗逆基因能够同时被多种胁迫信号诱导表达，是因为这些基因的启动子序列中存在一些与逆境诱导相关的基因转录调控的顺式作用元件[30]。ABRE 序列广泛存在于 ABA 诱导表达基因的启动子中，研究发现只含有单拷贝的 ABRE 并不能调控 ABA 诱导基因的表达，至少还需要 1 个 ABRE 元件或 ABRE 融合元件（如 CE1、CE3）的存在[31]，如小麦 HVA1 基因的表达需要 ABRE 和 CE1（或 CE3 元件）的共同存在[32]。由此推测当 TaNAC2b 外其他基因的表达可能受 ABA 调控，而 ABA 可参与调节植物对多种不同外界环境的反应，如低温、干旱和高盐。AtnAC2c 基因的启动子区域除了含有 2 个 ABRE, 1 个 CE1, 1 个 CE3 外, 还有 2 个 MBS 元件。芯片表达数据显示, Ta. 5367. 3.Sl_s_at 在干旱胁迫诱导下表达量有明显提高。同时 Y. M. Tang 等[27] 比较 TaNAC2a 基因转录因子在干旱诱导下表达的变化，发现 TaNAC2a 基因在干旱条件下表达量整体呈现上升趋势，芯片表达结果一致。

AtnAC2b 与 Ta. 9497. 1. Sl_s_at 序列相似度达 97%，芯片结果显示 Ta. 9497. 1. Sl_s_at 的表达响应低温、干旱胁迫。实时定量 PCR 结果表明, AtnAC2b 基因在低温、干旱处理下表达量变化明显。AtnAC2b 基因启动子区域含有 ABRE 及 LTR 顺式作用元件，推测其可能受基因调控网络上游转录因子基因的调控，进而与下游功能基因的启动子顺式作用元件结合，从而诱导下游功能基因的表达，表现出低温、干旱胁迫响应。

4 结论

本研究通过对普通小麦祖先种乌拉尔图小麦和粗山羊草全基因组数据进行生物信息学分析，分别鉴定，获得了 107,126 个 NAC 家族基因，分为 2 大
类 15 个亚家族，对其中 11 个可能与抗逆相关的 NAC 基因进行启动子区域元件分析，发现均含有逆境反应顺式作用元件；高光定量结果显示其表达具有明显的组织特异性，结合芯片数据，启动子元件分析，逆境胁迫下基因表达模式研究，预测 AtNAC2c 基因可能参与植物干旱胁迫响应，AtNAC2b 可能参与调控植物的抗旱、抗低温反应。综上所述，本试验通过生物信息学的方法对普通小麦祖先种基因家族进行分析，推断并预测基因的结构与功能，从而为挖掘和利用普通小麦祖先种中的优异抗逆基因资源及功能研究提供理论与试验依据。

参考文献