Sequence Variation and Expression Profiles of Dihydroflavonol Reductase in Red Flesh and White Flesh Radish Germplasm

SUN Yu-yan, ZHANG Xiao-hui, QIU Yang, LI Xi-xiang, WANG Hai-ping, SHEN Di, SONG Jiang-ping

(Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Beijing Research Station of Vegetable Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture, Beijing 100081)

Abstract: Dihydroflavonol reductase is a key enzyme of anthocyanidin synthesis in plants. Cloning and analysis of dihydroflavonol reductase gene (DFR) was carried out in China’s peculiar radish germplasm 'Xinlimei' with red flesh. By blasting the complete CDS sequence of Chinese cabbage DFR gene in the whole genome sequences database of white radish inbred line '36-2' (unpublished), a homologous single gene Rsal0008592 was obtained. The complete CDS of RsDFR was amplified from the fleshy root of 'Xinlimei' radish inbred line 'HX12Q-49' with the primers designed according to the Rsal0008592 sequence by RT-PCR. The ORF of RsDFR was 1164 bp in length (Genbank accession number: KF280272), and encoded a 387 aa of protein (Genbank accession number: AGU42192). The sequence difference of 19 nucleotide acids and 3 amino acids were found between 'Xinlimei' radish and white radish through sequences comparison. Phylogenetic tree showed that RsDFR had the highest homology with the DFRs of Chinese cabbage and mustard. qRT-PCR result showed that the expression patterns of the RsDFRs in the fleshy roots of 'Xinlimei' radish and white radish were different. RsDFR in white radish only expressed at early developmental stage, while expressed at all developmental stages and reached the peak at the splitting stage in 'Xinlimei' radish. The protein from RsDFR was further analyzed.
Key words: Xinlimei’ radish; dihydroflavonol reductase; cloning; sequencing analysis; expression analysis.

植物中常见的花青素主要有天竺葵色素、矢车菊色素、罙草色素、锦葵色素、鸡药色素和牵牛花色素6种。‘心里美’萝卜(Raphanus sativus L.)是我国特有的萝卜资源，其肉质根的花青素组分主要是天竺葵色素[1]。从这类萝卜中提取的花青素可用作食品天然色素添加剂[2]，其衍生物可用作饮料制品组分，使饮料表现出较高透明度和色度[3]。另外，萝卜花青素也是保健食品花青素胶囊的候选成分。

植物花青素合成的代谢通路基本明了[4,5]。萝卜花青素合成的部分基因已被克隆，从萝卜下胚轴中克隆出了编码苯丙氨酸解氨酶(PAL, phenylalanine ammonia lyase) (AB087212)、查尔酮异构酶(CHI, chalcone isomerase) (AB087208)、黄烷醇3-羟化酶(F3H, flavanone 3-hydroxylase) (AB087210)和二氢黄酮醇还原酶(DFR, dihydroflavonol reductase) (AB087211)等4个基因[6]，以及编码花色素合成酶(ANS, anthocyanidin synthase) (AB087206)和查尔酮合成酶(CHS, chalcone synthase) (AB087209)的2个基因[7]；从萝卜肉质根中克隆出了编码肉桂酸4-羟化酶(C4H, cinnamate 4-hydroxylase) (HQ641568)和4-香豆酸:CoA连接酶(4CL, 4-coumarate:CoA ligase) (HQ641569)的2个基因[8]。但是，在这些基因中，除CHI和CHS是完整cDNA序列外，其余均为部分cDNA片段。

二氢黄酮醇还原酶是花青素生物合成途径下游的第一个关键酶，其在介子子NADPH的作用下将第4位碳基还原为羟基，催化二氢黄酮醇底物生成无色原花青素[4,10]。大白菜、芥菜、油菜、甘蓝、拟南芥等十字花科植物的DFR完整cDNA序列已公布在NCBI上，但尚未见萝卜DFR基因全长的报道。

本研究通过比较大白菜DFR基因序列与白萝卜自交系‘36-2’的全基因组序列，获得萝卜DFR基因序列，以此设计引物从‘心里美’萝卜自交系‘HIX1Q-49’中克隆RsDFR的完整CDS序列，分析‘心里美’萝卜和白萝卜DFR基因核苷酸和氨基酸序列的差异，以及该基因在‘心里美’萝卜和白萝卜不同发育阶段的表达特性，为了解‘心里美’萝卜DFR蛋白的结构特征，解析DFR在萝卜花青素合成中的作用及调控机制，以及为萝卜品质的遗传改良提供理论依据。

1 材料与方法

1.1 试验材料

供试材料为绿皮红肉‘心里美’萝卜自交系‘HIX1Q-49’和白皮白肉萝卜自交系‘36-2’，于2012年8月18日播种于中国农业科学院蔬菜花卉研究所廊坊基地，分别采取芽期、破肚期、膨大前期、膨大中期和成熟期5个发育时期的萝卜肉质根（对应时间分别为播种后10 d, 19 d, 40 d, 61 d和75 d）, 用蒸馏水冲洗干净, 置于液氮中速冻, -80 ℃保存。

Trizol试剂购于Invitrogen公司，反转录试剂盒、克隆载体pEASY-T1、大肠杆菌感受态细胞Trans-T1和2×TransStart top Green qPCR SuperMix购于北京全式全生物科技有限公司，2×Taq PCR MasterMix购于北京博迈德科技发展有限公司，琼脂糖凝胶回收试剂盒购于北京天根生化科技有限公司，引物序列由生工生物工程(上海)股份有限公司合成。

1.2 RNA提取及cDNA反转录

采用Trizol法分别提取‘心里美’萝卜和白萝卜5个不同发育时期的肉质根RNA。用反转录试剂盒TransScript One-Step gDNA Removal and cDNA Synthesis SuperMix合成cDNA第一链。

1.3 二氢黄酮醇还原酶基因ORF扩增

从NCBI中获取大白菜DFR完整CDS序列，并与白萝卜的基因组测序结果进行比对，获取白萝卜‘36-2’DFR基因序列，据此设计5’和3’引物(表1)，以‘心里美’萝卜的肉质根cDNA为模板，进行PCR扩增，克隆测序获得‘心里美’萝卜RsDFR开放阅读框(ORF)序列。PCR扩增的反应体系为20 μL: 2×Taq PCR MasterMix 10 μL, 上游和下游引物(10 μmol/L)各0.4 μL、模板DNA(50 ng/μL)2 μL、补灭活ddH2O至20 μL。PCR扩增条件为：95 ℃预变性5 min; 95 ℃变性30 s; 55 ℃退火30 s; 72 ℃延伸45 s, 35个循环; 72 ℃延伸10 min。PCR产物经1%琼脂糖凝胶电泳检测后回收，与pEASY-T1载体连接进行TA克隆，热击法制转化Trans-T1大肠杆菌感受态细胞，菌落PCR筛选阳性克隆，过夜摇菌，测序。测序由北京擎科新生物技术有限公司完成。

1.4 不同发育时期基因表达分析

从‘心里美’萝卜和白萝卜5个不同发育时期的肉质根中提取总RNA，并反转录为第一链cDNA，进行荧光定量PCR扩增。利用Premier Premier 5软
1.6 数据分析

通过试验数据统计分析采用SAS 8.1软件，结果用平均值±标准差（SE）表示，差异显著性检验采用最小显著差数法（LSD, least significant difference），差异显著水平为0.05。

2 结果与分析

2.1 二氢黄酮醇还原酶基因的克隆及序列分析

2.1.1 ‘心里美’萝卜候选二氢黄酮醇还原酶基因的扩增

将NCBI中公布的大白菜DFR基因的完整CDS序列（AY567978）与萝卜基因组序列结果进行比对，获得唯一的同源性为95.42%的序列Rsai10008592，预测该基因为萝卜候选DFR基因。以RsDFR-F和RsDFR-R引物，以‘心里美’萝卜肉质根cDNA为模板，经PCR扩增获得目的基因，测序结果显示该基因的完整CDS长度为1164 bp，编码387个氨基酸。

2.1.2 ‘心里美’萝卜和萝卜二氢黄酮醇还原酶基因的序列差异

将‘心里美’萝卜克隆获得的RsDFR与萝卜的同源序列Rsai10008592进行比对，发现在核苷酸序列和氨基酸序列上存在差异，其中有19个核苷酸的变异，变异率为1.63%（图1）。经推算的氨基酸序列存在3个氨基酸的差异，变异率为0.78%（图2）。肖萝卜中第246,268和292位氨基酸为苏氨酸（亲水性）、异亮氨酸（疏水性）和丙氨酸（疏水性），在‘心里美’萝卜中分别变异为丙氨酸（疏水性）、苯丙氨酸（疏水性）和脯氨酸（疏水性）。

2.2 不同种间二氢黄酮醇还原酶基因的比较和进化分析

将‘心里美’萝卜RsDFR编码的氨基酸序列提交到NCBI与具有完整DFR CDS序列的物种进行Blastp比对，结果发现，‘心里美’萝卜RsDFR蛋白与大白菜（ABY89686）和芥菜（ABL86389）的同源性最高，达到98%，与十字花科作物其他物种如甘蓝（AA073442）、油菜（ABG76202）、拟南芥（AAA32783）、芹菜拟南芥（CAP088825）和罂粟条果芹（ADY02654）的同源性分别达到97%、95%、93%、92%和90%，与楔叶科植物黄花（BAE19952）、苜蓿（AAR27014）、大豆（NP_001238612）、花生（AXE07281）的同源性为80%、81%、78%和81%；与蔷薇科植物樱桃（ADZ54784）、（ADZ54784）、草莓（BAH24302）、苹果（AAC12363）、苹果（ACP30626）和梨（AAO39818）的同源性为82%、81%、78%和79%，与葡萄科的山葡萄（ACN82380）的同源性为79%。
图1 ‘心里美’萝卜 ‘HX12Q-49’ 和白萝卜 ‘36-2’ 的二氢氧酵酸还原酶基因核苷酸序列比对
Fig. 1 Nucleotide acid sequences blast of DFRs between ‘Xinlimei’ radish inbred line ‘HX12Q-49’ and white radish inbred line ‘36-2’

图2 ‘心里美’萝卜自交系 ‘HX12Q-49’ 和白萝卜自交系 ‘36-2’ 二氢氧酵酸还原酶基因氨基酸序列比对
Fig. 2 Amino acid sequences blast of DFRs between ‘Xinlimei’ radish inbred line ‘HX12Q-49’ and white radish inbred line ‘36-2’

利用 MEGA 4.1 软件 Neighbor-Joining 算法（测试方法选用 bootstrap, 重复次数设为 100）构建 ‘心里美’ 萝卜 RsDFR 蛋白与其他物种 DFR 蛋白的进化树，根据物种所属的科属可明显地分为十字花科、蝶形花科、蔷薇科和葡萄科 4 个亚类。其中，‘心里美’ 萝卜 RsDFR 与大白菜和芥菜的亲缘关系最近，同属十字花科亚类（图 3）。

2.3 二氢氧酵酸还原酶基因在不同萝卜自交系肉质根的不同发育阶段的表达分析

对 26S 和 DFR 基因引物的溶解曲线进行分析（图 4, 图 5），其 Tm 值分别为 87.35 °C 和 81.54 °C，仅出现一个单峰，说明所设计的引物扩增出的目的片段是特异的。将‘心里美’萝卜肉质根模板 cDNA 稀释成 5 个梯度浓度，绘制标准曲线。RsDFR 和 26S 的扩增效率分别为 100.231% 和 99.194%，R² 分别为 0.996 和 0.998，说明采用 2-ΔΔCT 法计算基因相对表达量是可靠的。荧光定量 PCR 结果表明，RsDFR 在‘心里美’萝卜和白萝卜的表达模式不同；RsDFR 在‘心里美’萝卜肉质根的不同发育阶段均有表达，在破肚期的表达量达到最高，而破肚期与芽期、膨大前期、膨大盛期和成熟期的表达量均有显著差异（P < 0.05）；而在白萝卜中该基因仅在肉质根发育早期（芽期和破肚期）表达，在肉质根发育后期没有检测到该基因表达。在 5 个不同的发育时期，DFR 在‘心里美’萝卜和白萝卜的 5 个不同发育时期的表达量均有显著差异（P < 0.05），破肚期白萝卜的表达量是‘心里美’萝卜的 3.6 倍，破肚期‘心里美’萝卜的表达量是白萝卜的 5.1 倍，而后期 DFR 在‘心里美’萝卜中仍维持一定的表达量，但在白萝卜中检测不到 DFR 的表达（图 6）。
Fig. 3 The phylogenetic tree of DFRs from various species

Fig. 4 Melt curve of 265 gene

Fig. 5 Melt curve of DFR gene

Fig. 6 Relative expression of DFR in the fleshy roots of two different radish inbred lines at different development stages
3 谈论

花青素是植物中一类重要的黄酮类代谢物，对植物本身具有重要的生理功能，如吸引昆虫授粉和传播种子以及保护植株免受 UV 的伤害、避免病原菌的侵染等[11]。另外，花青素具有预防癌症、炎症和心血管疾病的保健功能[12]，近年来受到越来越多的关注。萝卜肉质根皮色和肉色具有多样性，包括白色、红色、紫色和绿色等，而能产生天然花青素的‘心里美’萝卜是我国特有的研究花青素合成机制和调控网络不可多得的种质资源。

花青素合成途径结构基因和调控基因的序列突变对于花青素能否正常形成十分重要。目前对各植物能正常形成花青素和不能形成花青素种质资源的相关结构基因和调控基因的差异分析已取得一定进展，如对葡萄果皮由紫色突变为白色的研究，发现是由调控因子 Vvmyba1 等位基因的功能缺失引起的[14]。通过对白皮葡萄和红皮葡萄的 UDP-葡萄糖：类黄酮 3-O-磷酸基转移酶（UGFT, UDP-glucose；flavonoid 3-O-glucosyltransferase）的序列分析，发现其在编码区和启动子区不存在序列差异，可能是由其他结构基因或转录因子的突变引起的[15]。陈翔[16]对圆白茄和紫长茄 DFR 基因进行克隆及序列分析，发现 DFR 基因存在 2 个位点的突变，一个为同义突变，一个为错义突变，另外，该基因在圆白茄和紫长茄的表达有显著差异，说明 DFR 基因序列的变异可能是造成茄子花青素差异的关键基因。

本研究首次从‘心里美’萝卜肉质根中获得 Rs-DFR 基因的完整 CDS 序列。通过与白萝卜的 DFR 进行序列比对，发现二者存在 19 个核苷酸和 3 个氨基酸的差异，其中第 246 位氨基酸在‘心里美’萝卜中为疏水性的丙氨酸，而在白萝卜‘36-2’变异为亲水性的苏氨酸，在‘心里美’萝卜中第 268 和 292 位氨基酸为苯丙氨酸和缬氨酸，在白萝卜中变异为异亮氨酸和丙氨酸。这种结构基因的变异可能是导致
二次根色系不同的关键因素之一。

通过对RedFR在不同萝卜自交系不同生育期的差异表达分析发现，在‘心里美’萝卜和白萝卜不同生育阶段的表达模式是不同的，RedFR在‘心里美’萝卜中从芽期到成熟期的5个发育阶段均表达，且在破肚期表达到最高峰，后期维持一定的表达量。这与王淑芬[17]观测的‘心里美’萝卜花青素含量在破肚期达到最高的结果是一致的。该基因在白萝卜肉质根发育早期亦有少量表达，在发育的后期则没有检测到其表达。这种表达模式的不同不仅与该基因本身的结构变异影响之外，是否还受到不同转录因子的共同调控，需要对该基因进行进一步的功能验证以及花青素合成途径不同基因间协同调控关系的深入研究。

RedFR在白萝卜芽期和破肚期根中呈瞬时表达，但在没有观察到肉质根中明显的花青素积累。究其原因可能是植物为了抵抗外界病原菌、UV或其他逆境对细胞的破坏而产生的应急反应[5,18-19]。在萝卜肉质根发育早期，植株比较弱小，易受病虫害和非生物胁迫等影响，通过产生花青素来对抗外界胁迫，随着植株生长，体内的防御机制成熟，便不再需要暂时性花青素的合成。

另外，通过对不同物种DFR氨基酸序列的进化树分析，发现DFR被显著地分为十字花科、蝶形花科、菊科和葡萄科4个亚类，各物种与‘心里美’萝卜RDWR同源性在78%～98%之间，其中与大白菜和芥菜的同源性最高。不同物种花青素的种类不同，其合成途径和涉及的相关基基因可能有别；亲缘关系相近和花青素种类相同的物种的DFR同源性较高。但该基因在某些物种中仅在根部高表达，而在有的物种中只在叶或茎部高表达。随着对不同物种或不同器官中的花青素生物合成调控网络的全面解析，将为作物的品质改良以及功能性次生代谢物的生物工程制造提供理论依据和技术支撑。

参考文献
[1] Tanaka Y, Ohmiya A. Seeing is believing: engineering anthocya-
nin and carotenoid biosynthetic pathways [J]. Curr Opin Bio-
tech, 2008, 19(2): 190-197
[4] Holtan T A, Cornish E C. Genetics and biochemistry of anthocya-
[10] Saito K, Yamauchi M. Biochemistry and molecular biology of the late-stage biosynthesis of anthocyanins: lessons from Perilla fru-