烟草黄绿叶突变体的遗传分析与基因定位

孙明铭¹, 蒋彩虹¹, 罗朝鹏², 杨 军², 张剑锋², 蒲文宣³, 刘万峰³, 杨爱国¹, 程立锐¹ (¹中国农业科学院烟草研究所,山东青岛 266100;²中国烟草总公司郑州烟草研究院,郑州 450001; ³湖南中烟工业有限责任公司,长沙410007)

摘要:以 G117 为父本、RG13 为母本,杂交获得 F₁群体。系谱法常规选择过程中,在 F₃株系内发现黄绿自然隐性突变株。 该突变体的叶色在旺长期前呈现正常绿色,进入旺长期后,叶色逐渐发黄,叶脉呈乳白色,与正常烟株差别明显。遗传分析表 明该突变体性状受1 对隐性基因控制。从来源于一个连续自交单株的分离群体中分别选取 10 份隐性纯合烟株和 10 份显性 烟株,利用 430K 烟草高密度 SNP 芯片进行基因型分析,快速确定了与目标性状相关联的标记。进而利用该分离群体验证相 关分子标记,将该基因定位在烟草第5号染色体 M7 和 M18 之间,并与 M7 标记共分离。相关研究为进一步克隆该基因奠定 了基础,同时也为烟草其他重要性状的定位提供了一种有效、快速的方法。

关键词:烟草;突变体;SNP芯片;基因定位

Genetic Analysis and Mapping of a Yellow-green Leaf Mutant of Tobacco(*Nicotiana tabacum* L.)

SUN Ming-ming¹, JIANG Cai-hong¹, LUO Chao-peng², YANG Jun², ZHANG Jian-feng², PU Wen-xuan³, LIU Wan-feng³, YANG Ai-guo¹, CHENG Li-rui¹

(¹Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao Shandong 266100;
 ²Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 563006;
 ³China Tobacco Hunan Industrial Co., Ltd., Changsha 410007)

Abstract: In the present study, we mapped a single recessive locus that resulted in yellow-green leaf phenotype in a naturally occurring mutant of tobacco. This mutant derived from F_3 offspring of a cross between tobacco cultivars G117 and RG13 in a breeding program. By taking use of 430K single nucleotide polymorphism(SNP) arrayand bulked segregant analysis(BSA), this locus was rapidly assigned on chromosome 5 and few linked markers were obtained. Furthermore, the genetic interval was deeply narrowed down in an enlarged segregation population, and this gene was mapped on chromosome 5, co-segregating with the SNP marker M7. Thus, this work provided evidence in understanding of the inheritance of yellow-green leaf mutant, and suggested analternative strategy(based on SNP array) for gene mapping in tobacco.

Key words: tobacco; mutant; SNP chip; gene mapping

在植物界中,叶色突变现象普遍存在。研究 者已经在拟南芥^[1]、水稻^[2]、玉米^[3]、大麦^[4]、番 茄^[5]和茶树^[6]等多种植物中发掘和鉴定出了叶色 突变基因。而引起植物叶色变化的原因有很多, 但是作用机制基本相同,都是由叶绿素缺失或者 叶绿体发育受阻造成的。叶色突变体不仅是研究 植物光合作用、叶绿素合成、叶绿体遗传分化及 发育等的重要材料,也可作为标记性状应用于杂

收稿日期:2018-01-31 修回日期:2018-03-12 网络出版日期:2018-06-26

URL: http://kns. cnki. net/kcms/detail/11. 4996. S. 20180625. 1737. 001. html

基金项目:中国烟草总公司烟草基因组计划重大专项(110201601028(JY-02));中国农业科学院科技创新工程(ASTIP-TRIC01);中国烟草 总公司烟草科技重点项目(110201502012)

第一作者研究方向为烟草分子育种。E-mail:sunmingming1994@126.com

通信作者:程立锐,研究方向为烟草分子育种。E-mail:chenglirui@ caas. cn

杨爱国,研究方向为烟草分子育种。E-mail:yangaiguo@ caas. cn

种优势利用中^[7]。史琳等^[8]研究表明,白化基因 在烟草中表达后,烟草叶片在外观上呈现白色, 同时烟草叶片中胺类物质的含量也相对增加。 烟草叶片呈现的白色性状,可以作为品种选育的 标记;而使用胺类物质含量高的烟草叶片制成的 香烟会有特别的风味。因此,发掘和鉴定烟草叶 色突变基因,对烟草品种培育及烟叶生产具有重 要的意义。

单核苷酸多态性(SNP, single nucleotide polymorphism)开启了新的分子标记时代,是继以简单重 复序列(SSR, simple sequence repeats)、限制性片段 长度多态性(RFLP, restriction fragment length polymorphism)为代表的第二代分子标记技术基础上发 展起来的第三代分子标记技术^[9-10]。SNP标记在基 因组中数量多、分布广且可高通量检测,使其在质量 和数量性状位点(QTL, quantitative trait locus)定位 和全基因组关联分析(GWAS, genome-wide association study)中具有广阔的应用潜力^[11]。近年来,烟 草研究人员通过 SSR 等二代分子标记对烟草的多 个重要性状连锁基因进行定位,如:烟草化学指 标^[12-13]、重要农艺性状^[14-16]以及烟草抗病性^[17-18] 等。但是利用全基因组 SNP 芯片技术进行基因定 位在烟草中尚未见报道。

本研究在田间种植烟草过程中,发现一株黄绿 叶色突变体。该突变体的叶色在旺长期前呈现正常 绿色,进入旺长期后,叶色逐渐发黄,叶脉呈乳白色, 与正常烟株差别明显。本研究拟对该突变体进行遗 传分析,进而利用 430K 烟草高密度 SNP 芯片结合 选择群体定位策略,快速确定与目标性状相关联的 标记,实现目标基因的快速定位,为克隆相关基因奠 定基础,同时对烟草中其他重要性状的定位研究提 供理论和方法上的借鉴。

1 材料与方法

1.1 材料

烟草品种 G117 和 RG13 的种子均由中国农业 科学院烟草研究所种质资源库提供。亲本 G117 和 RG13 均由中国农业科学院烟草研究所引自美国, 都属于典型的烤烟类型。2009 年 7 月,项目组配置 了 G117/RG13 的杂交组合 F₁,进而进行常规系谱 选择育种。自 F₃开始,在株系内发现黄绿自然隐性 突变株,随后每个世代,选择 4~5 株正常单株混合 收种。从 F₅开始,通过自交株系分离情况,确定一 株目标区段杂合的单株,自交收获种子。2014 年, 种植来源于该单株的 300 株分离群体,分别收获单 株种子。2015 年,通过自交确定目标区段显性纯 合、隐性纯合以及杂合的单株,分别收获不同类型单 株自交种子。2016 年,山东省青岛市即墨试验基地 大田环境条件下分别种植 10 份隐性纯合株系、7 份 显性纯合株系和 3 份杂合株系,获得 F₇分离群体。 其中,两个分离群体 L-46 和 L-48 分别种植 303 株 和 291 株,其余每个株系种植 40 株。开花期调查不 同株系内突变株和正常株数目,通过卡方检测进行 其遗传适合性检测。

1.2 方法

1.2.1 烟草植株 DNA 提取 分别提取 10 份隐性 纯合烟株、7 份显性纯合烟株和 3 份杂合烟株的基 因组 DNA,构建正常和突变两个群体,用于烟草高 密度 SNP 芯片扫描;提取 L-48 株系(F₇)中分离群 体烟草植株的基因组 DNA,群体大小为 216,用于 目标性状定位的进一步验证和分析。DNA 提取均 采用天根试剂盒,实验方法参照该试剂盒内的说 明书。

1.2.2 SNP芯片扫描及数据分析 依托国家烟草 总公司郑州烟草研究院烟草研究平台,应用烟草 430K SNP芯片(Gene Tian芯片,美国,Affymetrix公 司,432362 个 SNP)对突变体群体和野生型群体各 10 份材料进行 SNP 分型,SNP 检测步骤参考张剑锋 等^[19]的报道,略有调整。在获得 SNP芯片分析数据 后,选择 Poly High Resolution 类型的高质量 SNP标 记进行后续分析。利用 Microsoft Excel 2007 软件处 理不同选择群体分析数据,通过比对两个群体间 SNP 位点不同基因型的分离比来确定与目标性状显 著关联的 SNP 位点,当某一个位点的 ΔSNP≥0.9 时,认为该位点与性状显著关联。ΔSNP 计算公式 如下:

 $\Delta SNP = | (| SNP1_index | - | SNP2_index |) |$

其中,SNP1_index 是指在突变体群体中在相应 SNP 位点上,分别来源于不同亲本基因型频率的差 值。SNP2_index 指在正常群体中在相应 SNP 位点 上,分别来源于不同亲本基因型频率差值。

1.2.3 烟草黄绿突变体的基因定位 基于 430K SNP 芯片平台和两个选择群体,快速鉴定与目标性 状紧密关联的 SNP 标记。然后选择在群体中检测 到的显著相关的 SNP 标记对 L-48 随机分离群体进 行基因型鉴定。首先,根据公布的烟草参考基因组 序列^[20],用 BLAST 工具(http://218.28.140.17/ tools/blast/blast.php)对显著性位点所在染色体位 置进行序列比对,利用 Primer-Blast (https://www. ncbi. nlm. nih. gov/tools/primer-blast/) 设计引物 (M4F: TAGCCTTGACATCGGGTTT, M4R: TTGCCA-CAGAGGACTGTTAGT; M7F: GCAAGGTGCCTGTG-GAT, M7R: CGACAACCGAGCCCGTA; M18F: GAT-AGAGGGACCTGAAGC, M18R: CAAAGGACCGAA-CAACC),在随机分离群体中进行 PCR 扩增。50 µL 的 PCR 反应体系包括:10 µmol/L 引物(F和R各 1 µL),100 ng/µL 模板 DNA(2 µL),2 × Taq Plus Master Mix II(23 µL),ddH₂O(23 µL),引物由睿 博兴科生物技术有限公司合成。反应条件为:94 ℃ 预变性 3 min;94 ℃变性 25 s,55 ℃复性 25 s,72 ℃ 延伸 25 s,35 个循环;72 ℃再延伸 8 min。相关产 物直接送测序公司进行一代 Sanger 测序,进而通 过序列比对的方法直接获得随机分离群体的基因型。利用 Joinmap 4.0 软件^[21]计算基因与标记间的重组率,选用 Kosambi 函数将重组率转化为遗传距离。采用 Mapchart 2.2 软件^[22]绘制遗传图谱。

2 结果与分析

2.1 突变体材料表型观察及遗传规律分析

突变体苗期长势正常,和野生型相比叶色没有 明显差异。但是随着烟株生长,突变体(*NTnm-1*) 与野生型(ys)的叶色差异越来越明显。在开花期, 突变体自上而下叶片颜色正常植株都偏黄绿色,叶 脉呈乳白色,且越往下的叶片性状差异越明显 (图1)。

A:ys 和 NTnm-1 在生育期的表型对比;B:ys 和 NTnm-1 的下二棚叶在始花期的表型对比 A:The phenotypes of ys and NTnm-1 during the growth period,B:The lower leaves of ys and NTnm-1 at the beginning of flowing time 图1 野生型(ys)和突变体(NTnm-1)的表型对比

Fig. 1 The yellow-green phenotype of the *NTnm-1* mutant

突变体亲本 G117 与 RG13 均为典型烤烟品种, 均无黄绿表型。同时在两个亲本材料组合 F₁和 F₂ 并没有发现黄绿突变株,在后代系谱选择中,正常单 株收获后种植为株系,部分株系内会分离出黄绿突 变株,这表明该黄绿突变株是来自于自然条件下的 隐性突变。

将入选的单株分别自交收种后,再种植成为群体,分别调查各群体内野生型和突变型烟株的数量,如表1所示。结果表明,10个黄绿突变单株(F₆)自 交株系(F₇)内单株均表现为黄绿突变不分离;10个 正常单株(F₆)自交株系(F₇),有3个株系内有分 离。其中,株系L-46自交F₇株系共包含303株,正 常单株226株,黄绿突变株77株;株系L-48自交F₇ 株系共包含291株,正常单株223株,黄绿突变株 68株;卡方分析表明,正常单株与突变单株比例符 合3:1。所以,该突变体表型受1对隐性单基因控 制,命名为*NTnm-1*。

2.2 SNP 芯片检测结果分析

利用 430 K 烟草 SNP 芯片对两个选择群体进 行分析,不同个体间共获得 3716 个多态性 SNP 标 记。进而通过计算不同 SNP 标记位点在极端群体 中的基因型分布频率,获得了 44 个显著性 SNP 标 记(表2)。通过与公布的烟草参考基因组比对,有 38 个标记可以明确物理距离。在 38 个与性状显著 关联的 SNP 标记中,有 26 个标记被定位在 5 号染 色体上。因此,初步将控制该黄绿性状的隐性基因 定位在烟草 5 号染色体。

株系 Line	世代 Generation	群体植株数量 No. of plants	野生型株数 No. of wild type	突变型株数 No. of mutant type	χ2(3:1)	P值 Pvalue
L-1	F ₇	40	0	40	/	/
L-2	\mathbf{F}_7	40	0	40	/	/
L-4	\mathbf{F}_7	40	0	40	/	/
L-5	\mathbf{F}_7	40	0	40	/	/
L-6	\mathbf{F}_7	40	0	40	/	/
L-7	\mathbf{F}_7	40	0	40	/	/
L-8	F_7	40	0	40	/	/
L-9	F_7	40	0	40	/	/
L-10	F_7	40	0	40	/	/
L-13	\mathbf{F}_7	40	0	40	/	/
L-43	\mathbf{F}_7	40	40	0	/	/
L-44	\mathbf{F}_7	40	40	0	/	/
L-45	\mathbf{F}_7	40	60	0	/	/
L-46	\mathbf{F}_7	303	226	77	0.009	0. 926
L-47	\mathbf{F}_7	40	40	0	/	/
L-48	\mathbf{F}_7	291	223	68	0. 234	0. 629
L-49	\mathbf{F}_7	40	40	0	/	/
L-50	F_7	40	40	0	/	/
L-51	F_7	40	40	0	/	/
L-53	F_7	40	31	9	0.069	0.793

表1 入选单株自交后代群体遗传分离比与卡方检测结果

Table 1 The segregation analysis of the offspring of the lines that were used for BSA analysis

表 2 基于高密度 SNP 芯片检测到的与突变性状显著关联的 SNP 标记信息

Table 2 SNP markers that significantly associated with the yellow-green phenotype

名称 Name	SNP	染色体 ¹ Chromosome	SNP 所在位置 ² (bp) Position of SNP	SNP 序列信息 SNP sequence information								
M1	C/T	1	72,906909	CCATCGTAATGGCCAGAACTTCCAAGACGGTTCCT[C/T]								
				GGCGAAACGAAGTCGTCTCTTCATCTCGGCCGTCT								
M2	A/C	4	91,574900	TCACTGTATTGGGAATGATGACTAGGATGCAGAAG[A/C]								
				GAGAGTTAACATCTTCCACTATATTAAAATTCTCC								
M3	A/C	5	31,925675	TGCAGATGGGCCCGACTTGGTTCGACGTTGAGTTA[A/C]								
				AAATATTAGACATATCTGCTGCATACAATCTTCTA								
M4	A/G	5	37,417596	TAAGTGGAAGAAGAGGGAACAGACAATGGAATGGT[A/G]								
				ATGGATGGCCTGGATGAAGGAGGGGGGTATGGAAGC								
M5	C/G	5	39,835544	TTTCGATTAATAGGGCTTTGGCAATTACAACAAGT[C/G]								
				AAACGAGCCAACTGAATAAATCCGCAACAGAAGAT								
M6	A/G	5	41,309275	TTTTTGCTGATGGCATGCTGGATTTCACCATTACA[A/G]								
				CTCCTGTTTTGCCCAGTCTATTGTTAATATCAATG								
M7	A/C	5	42,119255	TGGTTCTCAACTCCCGAACGCAATCCCGACTTAAT[A/C]								
				CCTTAGGCTTACATAGACTTCAAAGATCCAAATAG								
M8	A/G	5	43,408341	CTGGCCTAAGTTAAATATCATTGCAAATTGCTGAA[A/G]								
				ATCTTCAGCTGGTAATGTTCATTTTTCAATATGTT								
M9	A/T	5	43,457965	TAGTTCAAAAATTCCTAATTTACTCAAGTCAAGGT[A/T]								
				AGATCCAATACTTATCTAACTCCGCAATCAAATCA								

	表 2(续)表 2(续)													
名称	SNP	染色体1	SNP 所在位置 ² (bp)	SNP 序列信息										
Name		Chromosome	Position of SNP	SNP sequence information										
M10	G/T	5	43,469810	TATATATTTCTTAATTCTTCTCCTCTAATAATACT[G/T] CCTCAAATCTTAATACATCTTGGCAGCACCCGGAT										
M11	A/G	5	43 ,479920	CACTATATGGTGCACTGCTGGTTTTAATCTCTCAC[A/G] GATCATTTTGGAAATGCACTTATAAATGACATTAC										
M12	C/G	5	43,825175	TGTTGAGTTGATATCTTATCTTTGTTGAGTTGATG[C/G] TATTGCATCTCGTTATATCCTTGTTGCCACTTATT										
M13	A/C	5	43,880564	GCCTTCCATTGCTGTCAAAATCAGAAGAAGGTGGG[A/C]										
M14	C/T	5	47,181378	AGAATCCCCACCAGCCTCCACAAAATTTCCCAAGTA[C/T] CCTATAACCCATATTCCAAGTCAAAGGTGTATAAGG										
M15	C/T	5	53,179741	ATATACCAGAGTTCATGTCTTGGTGTCCTTAAGTG[C/T] AGTCAACTCCTACTGCATAGCATCAAGCCATTTGG										
M16	G/T	5	55,113894	GGAAGAGATCCATAATGCTTACTGTATCGAAGCCC[G/T] AGAAGATGAGGATGACCTCAACAGACCAACCCATT										
M17	A/G	5	56,092311	CTTGATATACTACACATTAGTATTCCATGATTAAC[A/G] TAGTATACAAAATTATAGGATTATCGATTTAACTG										
M18	A/G	5	56,392481	AACAACATGACATGTTGTTGATGTTATGTCTTATG[A/G] ATTTCCAGCTCAATCAGAGTCAGAATAAGCAAGTA										
M19	C/T	5	60,205625	ATCAATCGGTGAGAAAGTTCAAGAATCAGAGAATG[C/T] GGTTGCTTGGATCTGATGCAACGAGATGAGAGAAA										
M20	C/T	5	71,301791	AGGCGACTATGAGAATTAAGACCAACTTATCAAGG[C/T] GCGGATAACAAGTCTCTGCTCCTCACATAACATCA										
M21	A/G	5	78,434113	TTTTCACGGTTCTGATAGCTTCGTATGGTGATTTT[A/G] GACATATGAGAACGTTCGTATATTGATTTGAATAT										
M22	A/G	5	80,350242	AGCTCTTGATTTGGATTGGTTCTTAGACTTTCCAC[A/G] AGCTTCGGATATACCATAATTGCTCGAACCCTTTT										
M23	A/G	5	87,764481	TCATGTGCCACAAAAGACGTACCATAAGCTTTTCC[A/G] TAATGTACTAATCTACTGATTGATCTCATTAAGTC										
M24	A/T	5	91,431428	CACATGAAACACTTTTAATCTGATAACAAATATTT[A/T] CAAAAGGAGAATCCAATGCCACTTGAAGAAACAAA										
M25	A/G	5	91,625088	AGCTAAGGCAGGGAAGCATTGATGCTCAAGTTGTC[A/G] CCATGGGGATTATGAGGGATCGTGTAGTTACAGCT										
M26	C/T	5	91,682437	TTCTGCAAAAAGAGTGAAGCATGAGAGTATGTCTG[C/T] TAGGGAACGATTGAGGTGCCAAAAGGTACCGTGGG										
M27	C/T	5	91,746026	CTITGTTTTCTCTTCGAATTACCCTTAGGTCAACA[C/T] TCTTACTTGACATACACCAGTAATGTTACCCAAAG										
M28	C/T	5	104,353085	ATTGAGGTTGAGAATATTATGGAAACCTTTCCAAA[C/T] TAGCAACTGCTTGCTACTAGTCGTGAGGAAGTGCC										
M29	A/G	7	56,544245	ATATCCATGTGTCCTGGAAATGAATCTGTTAACTT[A/G] GGCTGGATGCCATATTTGGGGCCCTTGTGCCGAACT										
M30	A/G	8	55,719087	AGGAGGTGAATTTAATCGAGATGACATCAGACGAT[A/G] GTAGTGCTTGGAAAATGTTCTTCGATGGAGCTGTG										
M31	C/T	10	73,292178	TTTTGCTCCTTACCACTGCCCTTTCTTGCTTTCAA[C/T] TTGTTTAGCCTTTGTATCAACTGATTTCCAGTGAT										

表 2(续)												
名称 Name	SNP	染色体 ¹	SNP 所在位置 ² (bp)	SNP 序列信息								
Name		Chromosome		Sivi sequence information								
M32	A/T	10	81,983115	TATGGTCACAAGATAGGTGAATTTCTTAGCAGATT[A/T]								
				TTACAAGAACAATGAGAACTCACTGTTTTCAGTCA								
M33	A/G	11	61,188197	TCGATTCCAGCGGACACAGGATCGCAAGACGCACA[A/G]								
				CAGGTTGATGAAACCTCACATGTCTACAAGAGCAT								
M34	C/T	11	72,674278	TCCCCATTAGAGGACTTGTCCACAAGGTGATGGAC[C/T]								
				GGTAAGGAAAAGATCTCTTCCCTCACGATCATATC								
M35	C/T	15	38,362281	CATTGAGAATTCAGGAGATTGAATATATGAGCAAT[C/T]								
				ATCTTTAAAAGATITACAACTTGGTTCCACTTGTT								
M36	A/G	17	15,658832	TCAGCGACTTATAAGCCTTAGGACGGTGTGGTACT[A/G]								
				TGCTAACGTTCGTAGGGCAAGTTTTGGTTAAGGAT								
M37	C/G	17	173,449821	CAATTGTTCTGGTATCCCGTCGATAGACCTCATTT[C/G]								
				ATCTGGGCTAACCTCAATCCCTTGCTGTGATACCA								
M38	C/T	24	63,215622	TCACTGGTGCAGCCCCTTCACAACATGAAAATGCT[C/T]								
				TGAGTCACCTCTCACAATCCTCACTCGAGTCTTAG								
M39	A/G	/	/	TCGAGGCCAAGAAGCTAACTGATTCCGAAGGCTCC[A/G]								
				AGGGCTCTAAAGAATCTGAAGGCCCTGAATATGAT								
M40	A/C	/	/	TAACTAATTAAATTGGTACGTGCAGAGGGACCTCC[A/C]								
				ACTGTCATTTACTAAGTACTGCCCAGGCGACCGTC								
M41	C/T	/	/	TGCTCCGGTAGAAGTATCGGCTGCTGTAGAGGGAT[C/T]								
				GACAACTAACCCAGTGTCCACTACCTGGTAACAAC								
M42	C/T	/	/	TTAGGTAAGGCTCGGGCCTTTACAAAAGAACTGAC[C/T]								
				GAGGCATCACAGACCGCAGACAAGGCCCTCAATTT								
M43	G/T	/	/	GATGCGCTGGGTTTATTTTGGGCCCGGACATTTTT[G/T]								
				CTAGGAGGCGCCGTAAGTCCTCTTGTATAAGTCAG								
M44	C/T	/	/	AATAATAGCCATATATACACACCATAAATTAGTCT[C/T]								
				TTGTAGAAATGCAAGGTAAGATTGTGTATAATAGA								

¹染色体信息来源于公布的烟草参考基因组(https://solgenomics.net/organism/Nicotiana_tabacum);²代表染色体位置未知

 1 The information of chromosomes is derived from the published reference genome of tobacco(https://solgenomics.net/organism/Nicotiana_tabacum), 2 represents that the position of chromosomeis not clear

根据5号染色体上所有显著性位点在两个群体中的基因型(表3),绘制图谱,如图2所示。标记 M7位于5号染色体42119255 bp处,在突变群体中为 A,而在正常群体中有7个单株为C,在单株L-46、

L-48 和 L-53 中为杂合 A/C,基因型与表型共分离。因此,利用高密度 SNP 芯片平台和两个群体,将控制烟草黄绿突变性状的隐性基因快速定位在5 号染 色体 42M 附近。

表 3 5 号染色体上所有显著性位点在两个极端池中的基因型

Table 3	The genotype	dataset	of al	llinked	markersin	selected	lines 1	for BAS	analysis
---------	--------------	---------	-------	---------	-----------	----------	---------	---------	----------

标记		突变单株 Single mutant										野生单株 Wild single plant								
Marker ¹	L-1	L-2	L-4	L-5	L-6	L-7	L-8	L-9	L-10	L-13	L-43	L-44	L-45	L-46	L-47	L-48	L-49	L-50	L-51	L-53
M3	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	BB	BB	BB	BB	AB
M4	/	BB	BB	BB	/	BB	BB	BB	BB	BB	AA	AA	AA	AB	AA	AA	AA	AA	AA	AA
M5	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	BB	BB	BB	AB	BB	AB	BB	BB	BB	AB
M6	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	BB	BB	BB	AB	BB	AB	BB	BB	BB	AB
M7	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	AA	AA	AA	AB	AA	AB	AA	AA	AA	AB
M8	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AB	BB	BB	AA	/	AB	BB	BB	BB	AB

表3(续)

标记	记 突变单株 Single mutant									野生单株 Wild single plant										
$Marker^1$	L-1	L-2	L-4	L-5	L-6	L-7	L-8	L-9	L-10	L-13	L-43	L-44	L-45	L-46	L-47	L-48	L-49	L-50	L-51	L-53
M9	AB	BB	BB	BB	AB	BB	BB	BB	BB	BB	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA
M10	AB	BB	/	BB	AB	BB	AB	BB	BB	AB	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA
M11	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AB	BB	BB	AA	BB	BB	BB	BB	BB	AB
M12	AB	BB	BB	BB	/	BB	BB	BB	BB	/	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA
M13	/	BB	BB	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA							
M14	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	BB	BB	BB	AB	BB	AB	BB	BB	BB	AB
M15	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	AA	AA	AA	AB	AA	AA	AA	AA	AA	AA
M16	BB	BB	BB	BB	AB	BB	AB	BB	BB	AB	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA
M17	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	BB	BB	BB	BB	BB
M18	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	BB	BB	BB	AB	BB	AB	BB	BB	BB	AB
M19	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	BB	BB	BB	AB	BB	AB	BB	BB	BB	AB
M20	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AB	BB	BB	AB	BB	AB	BB	BB	BB	AB
M21	AA	AA	AA	AA	AA	AA	AA	AA	/	AA	BB	BB	BB	AB	BB	BB	BB	BB	BB	BB
M22	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	AA	AA	AA	AB	AA	AA	AA	AA	AA	AA
M23	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	/	BB	BB	BB	AB
M24	BB	BB	BB	BB	BB	BB	BB	BB	/	AB	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA
M25	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA
M26	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA
M27	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA
M28	AB	BB	BB	BB	AB	BB	AB	BB	BB	BB	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA

¹ AA, BB 和 AB 分别代表两种纯合亲本基因型(AA 和 BB)和杂合基因型(AB)

 $^{1}AA, BB$ and AB represent two homozygous parent genotypes (AA and BB) and heterozygous genotypes (AB), respectively

2.3 烟草黄绿突变体的基因定位验证

根据 SNP 芯片检测结果,在标记 M7、M4 和 M18 等 3 个 SNP 位点设计引物,鉴定 L-48 随机分 离群体基因型(群体大小 216),进而构建烟草遗传 图谱。如图 3 所示,相关定位结果与 SNP 芯片分析

结果一致,突变基因与 M7 标记位点共分离,距离 M4 标记 1.4 cM,距离 M18 标记 0.1 cM。因此,控 制该黄绿自然突变性状的基因位于烟草 5 号染色体 42119255 bp 附近。

3 讨论

随着分子技术的高速发展,利用分子标记技术 定位和克隆控制重要性状基因,进而开展分子标记 辅助育种已经在水稻^[23]、玉米^[24]、油菜^[11]等作物 上广泛开展。但是与其他重要作物相比,烟草上的 重要农艺性状位点定位和克隆研究相对落后,主要 原因在于:第一,普通烟草属于典型的异源四倍体, 是由两个野生二倍体林烟草和绒毛状烟草杂交后又 经历加倍而形成的,这大大增加了烟草基因组的复 杂性。第二,由于利用历史时间短、育种目标单一等 原因,烟草品种间的遗传背景狭窄,存在着明显的遗 传瓶颈。因此,经典的二代分子标记(SSR)由于扩 增效率差、遗传多态性低等问题不能很好地在烟草 性状定位中利用,这限制了烟草重要性状定位和克 隆的研究。例如,童治军等^[14]在定位赤星病位点 时,总共筛选了10005 个 SSR 标记,有多态性的标记 只有 590 个,多态率只有 5.9%。如此低的多态性 导致可用 SSR 标记过少,很难实现烟草全基因组扫 描。分子标记 SNP 标记作为第三代分子标记的代 表,具有数目多、密度高、遗传稳定性高和易于利用 仪器进行高通量检测等优点,在动植物遗传图谱构 建、重要性状定位和克隆以及遗传多样性分析等领 域越来越多的利用^[25]。在本研究中,利用 430K SNP 芯片对正常和突变两个选择群体进行位点扫 描,将烟草黄绿突变体相关基因快速定位在相应染 色体位置上。据我们所知,这是在烟草上第一次利 用 SNP 芯片开展性状定位,具有一定创新性。相关 结果证明了 SNP 标记及芯片平台在烟草这种基因 组复杂的异源四倍体中利用是完全可行的、有效的。

另外,对于叶色等受单个或几个基因控制的突 变体,传统的研究方法往往首先利用突变体和一个 遗传差异远的材料做杂交,利用 F,群体进行遗传分 析和定位[3],可以获得尽可能多的可用标记。这种 研究思路在拟南芥、水稻等基因组相对简单且研究 基础较好的植物中是十分可行的。但是,对于烟草 这种异源四倍体,开展突变性状定位时,研究者往往 面临这样的问题:如果选择突变体和遗传差异大的 材料重新配置组合,会增加基因组的复杂性,不同个 体间存在巨大的遗传背景差异,影响定位结果。在 本研究中,黄绿突变体是在常规育种中发现的自然 突变株,来源于一个单株的自交 F₂的分离群体内, 理论上每一个体的其他背景基本上纯合一致,只是 在目标区间内是杂合的,这有效地消除了遗传背景 对定位的干扰。在此材料基础上,本研究构建正常 和突变两个选择群体,利用高密度 SNP 芯片对其进 行基因组扫描,快速确定与目标性状紧密连锁的分 子标记,然后利用随机分离群体验证相关分子标记, 快速将目标基因定位在确定的染色体位置上。总的 来说,本研究中采用的选择群体结合 SNP 芯片检测 的定位策略是一种快速的、有效的目标性状基因定 位策略,在烟草基因定位方面具有广泛的应用潜力。

普通烟草按调制方式分类,可分为烤烟、白肋烟、晒红烟、晒黄烟、香料烟和雪茄烟等类型,其中白肋烟是普通烟草的缺绿突变体,在烟草生产中具有特殊用途^[14]。经典遗传学研究表明,白肋烟的缺绿突变遗传受2对重叠隐性基因Yb₁-yb₁和Yb₂-yb₂控制。只有2个位点都为隐性纯合时才表现出白肋烟表型^[26]。Wu等^[7]利用EMS诱变突变体材料和白肋烟材料,定位了2个控制叶色的隐性位点,分别位于5号连锁群和24号连锁群。其结果表明,控制

EMS 诱导突变体和白肋烟表型都是由 5 号和 24 号 连锁群上的2个隐性位点控制。在本研究中,黄绿 突变体是自然变异株,受1对隐性基因控制,与SNP 标记 M7(Chr05:42119255bp)共分离。这与之前报 道的黄绿突变体遗传规律不一致,说明可能是一个 新的控制黄绿突变表型的基因。但是,通过同源比 对也发现,本研究中定位到的隐性基因位置与 Wu 等^[7]报道的其中一个位点所在染色体位置相近。 同时,最新研究结果表明,Edwards等^[27]克隆了控制 白肋烟表型的两个基因,分别命名为 NtEGY1 和 Nt-EGY2。其中, NtEGY1 基因所在染色体位置与本研 究定位到的控制烟草黄绿叶基因位置相似,所以也 存在这样的可能:在 G117 或 RG13 中本身就携带1 个隐性纯合位点,当另一个隐性位点发生自然突变 时,后代个体中就可能出现突变表型。因此,在接下 来的研究工作中,首要是对本研究发现的突变体进 行 NtEGY1 和 NtEGY2 基因的扩增、比对,已确定该 隐性基因是否与 NtEGY1 为等位基因。如果是等位 基因,则进一步研究和比较自然突变体和白肋烟种 质在该基因位点上的异同;如果为非等位基因,则在 本研究基础上进一步扩大群体,精细定位和克隆相 关的基因。

4 结论

明确了烟草黄绿自然突变体的遗传规律,并 利用极端群体和430 K烟草高密度 SNP 芯片对烟 草黄绿突变基因进行了定位,发掘了与之共分离 的 SNP 分子标记 M7。相关研究结果为进一步精 细定位和克隆相关基因奠定了良好基础。同时, 本研究采取的极端群体结合芯片检测的策略为烟 草开展其他重要性状的定位和标记开发提供了 借鉴。

参考文献

- [1] Wu H, Zhang L X. The PPR protein PDM1 is involved in the processing of rpoA pre-mRNA in Arabidopsis thaliana. Chinese Science Bulletin, 2010, 55 (30):3485-3489
- [2] Gong X D, Jiang Q, Xu J L, Zhang J H, Sheng T, Lin D Z, Dong Y J. Disruption of the rice plastid ribosomal protein S20 leads to chloroplast developmental defects and seedling lethality. G3-Genes Genomes Genetics, 2013, 3(10):1769-1777
- [3] 韩帅,王立静,钟世宜,赵燕,刘保申.一个新的玉米叶色突变体的遗传分析及基因定位.玉米科学,2012,20(3):26-28
- [4] 金婷.大麦白化颖壳突变体的遗传分析和基因定位.杭州:浙 江师范大学,2013:30-31
- [5] 程旭东.番茄的硫胺素合成酶基因 LeTHIC 的克隆及功能分析.北京:中国科学院遗传与发育研究所,2008:20-28
- [6] 李娜娜.新梢白化茶树生理生化特征及白化分子机理研究.

杭州:浙江大学,2015:17-22

- [7] Wu Q Z, Wu X R, Zhang X F, Jiang C H, Xiao B G, Zhang Y Y, Wang Y Y, Liu G S. Mapping of two white stem genes in tetraploid common tobacco. Molecular Breeding, 2014, 34 (3): 1065-1074
- [8] 史琳,陈彦.植物白化基因的作用机制与研究进展.安徽农业 科学,2017,45(12):132-135
- [9] Lander E S. The new genomics: global views of biology. Science, 1996,274:536
- [10] 吴秋红,陈永兴,李丹,王振忠,张艳,袁成国,王西成,赵虹, 曹廷杰,刘志勇.利用 SNP 芯片和 BSA 分析规模化定位小麦 抗白粉病基因.作物学报,2018,44(1):1-14
- [11] Julio E, Denoyes-Rothan B, Verrier J L, Dorlhac de Borne F. Detection of QTLs linked to leaf and smoke properties in *Nicotiana tabacum* based on a study of 114 recombinant inbred lines. Molecular Breeding, 2006, 18;69-91
- [12] 柴利广. 白肋烟遗传连锁图谱的构建及烟碱含量 QTL 的定位. 武汉:华中农业大学,2008:20-35
- [13] 李华丽,陈美霞,周东新,陈顺辉,陶爱芬,李延坤,马红勃,祁 建民,郭玉春.烟草六个重要性状的QTL定位.作物学报, 2011,37(9):1577-1584
- [14] 童治军,焦芳婵,吴兴富,王丰青,陈学军,李绪英,高玉龙,张 谊寒,肖炳光. 烤烟 6 个农艺性状的 QTL 定位. 作物学报, 2012,38(8):1407-1415
- [15] 张吉顺,王仁刚,杨春元,吴春,史跃伟,王志红,王轶,任学良.国内外烤烟品种农艺性状的遗传多样性及与 SRAP 标记的关联分析.作物学报,2012,38(6):1029-1041
- [16] Bai D, Reeleder R, Brandle J E. Identification of two RAPD markers tightly linked with the *Nicotiana debneyi* for resistance to blackroot rot of tobacco. Theoretical And Applied Genetics, 1995, 91(8):1184-1189
- [17] 焦天雷. 烟草(*Nicotiana tabacum* L.) 赤星病抗性 QTL 的定位 分析. 杭州:浙江大学,2011:30-35
- [18] 朱承广,任民,蒋彩虹,张雨生,孙明铭,刘旦,程立锐,杨爱 国,王元英.以关联分析发掘烟草抗赤星病基因分子标记.中 国烟草科学,2017,38(1):68-72
- [19] 张剑锋,罗朝鹏,何声宝,金静静,李泽锋,许亚龙,谢小东,魏 攀,王燃,杨军.应用 SNP 标记分析 24 份烟草品种的遗传多 样性.烟草科技,2017,50(11):1-8
- [20] Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, Van der Hoeven R, Ganal M, Donini P. A high density genetic map of tobacco(*Nicotiana tabacum* L.) obtained from large scale microsatellite marker development. Theoretical And Applied Genetics, 2011,123;219-230
- [21] VanOoijen J W. JoinMap 4, Software for the calculation of genetic linkage maps in experimental populations. Netherlands: Wageningen, 2006:45
- [22] Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 2002,93:77-78
- [23] 吴国超,桑贤春,马娇,朱小燕,任德勇,郭爽,蒋钰东,杨正林,凌英华,何光华.水稻矮脆突变体 dwf1 的特性与基因定位.植物遗传资源学报,2014,15(4):795-801
- [24] 徐敏,石海春,余学杰,谭义川,柯永川,赵长云,柯永培.一个 玉米矮秆突变体 K123d 的遗传鉴定. 植物遗传资源学报, 2017,18(1):155-163
- [25] 唐立群,肖层林,王伟平. SNP 分子标记的研究及其应用进 展.中国农学通报,2012,28(12):154-158
- [26] 刘彩云. 普通烟草中的白肋型烟草叶色性状遗传及其质体色 素差异性研究. 北京:中国农业科学院,2011:28-45
- [27] Edwards K D, Fernandez-Pozo N, Drake-Stowe K. A reference genome for *Nicotiana tabacum* enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics, 2017, 18;448